Indexed by:
Abstract:
This paper investigates the effects of different passivation layers (PVLs) on the electrical performance and reliability of amorphous indium gallium zinc oxide (a-In-Ga-ZnO) thin film transistors (TFTs). By rational design, the fabricated a-InGaZnO TFT with hafnium oxide and aluminum oxide (HfO2/Al2O3) dual PVLs exhibits a field-effect mobility of 13.5 cm(2)/Vs, low sub threshold swing of 0.32 V/decade, and especially, small threshold voltage shifts of 0.5 (-0.6) V and 1.1 (-1.2) V under positive (negative) gate bias, and light illumination stress at the relative humidity of 40%. Furthermore, the a-In-Ga-ZnO TFTs with HfO2/Al2O3 dual PVLs maintain reasonable mobility and electrical performance even exposure to ambient condition for up to four months. This enhanced stability is attributed to the presence of high-quality HfO2/Al2O3 dual PVLs, which not only could suppress the photodesorption, reduce the total trap density and subgap photoexcitation behavior, but also protect the channel from environmental effects. Thus, the rational-designed HfO2/Al2O3 dual PVLs passivated a-In-Ga-ZnO TFTs with superior reliability represent a great step toward the achievement of long-term reliable zinc oxide-based oxide TFTs.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON ELECTRON DEVICES
ISSN: 0018-9383
Year: 2018
Issue: 7
Volume: 65
Page: 2844-2849
2 . 7 0 4
JCR@2018
2 . 9 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:170
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 44
SCOPUS Cited Count: 44
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: