Indexed by:
Abstract:
GaN materials have attracted great interest and have demonstrated remarkable potential in many fields. When growing GaN materials, substrate selection is of great importance. By virtue of their nominally unlimited size, easy removal, and excellent thermal conduction, metal substrates have been suggested as an alternative to the commonly used substrates such as sapphire. GaN growth on metal substrates, however, is still quite rare, and many aspects remain unexplored. This paper uses computational fluid dynamics to perform a three-dimensional numerical simulation of the GaNMOCVD reaction chamber. We investigated the influence of the graphite containers' rotational velocity and the metal matrix's temperature at various locations. When the pressure within the MOCVD chamber remains constant, increasing the graphite tray's rotational velocity enhances the temperature field distribution within the chamber. However, the flow field becomes unstable when the rotation rate exceeds 1000 rpm. Our findings serve as a crucial benchmark for the future parameter optimization of MOCVD growth of GaN on metals. © 2024 John Wiley and Sons Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 0097-966X
Year: 2024
Issue: S1
Volume: 55
Page: 1059-1063
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: