Indexed by:
Abstract:
本文基于二次分解和集成学习的思想,构建VMD-EEMD-DE-ELM-DE-ELM组合模型,选取CBOT交易所上市的大豆,小麦及水稻期货作为国际粮食期货的代表,预测其未来收益率走势.鉴于目前已有研究均直接忽略VMD分解后残差项所含纳的重要信息,本文引入二次分解思想首次对其残差项进行EEMD二次分解、集成预测,改善其预测精度,进而提高模型整体预测精度.同时,针对现有组合模型预测方法采用等权重重构分量预测结果的缺陷,本文借鉴集成学习的思想,引入DE-ELM元学习器优化预测重构权重,优化模型全局预测表现.实证结果发现:本文提出的混合模型相较参照组模型具有显著的预测优势.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
系统工程理论与实践
ISSN: 1000-6788
CN: 11-2267/N
Year: 2021
Issue: 11
Volume: 41
Page: 2837-2849
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: