• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zeng, Ruijin (Zeng, Ruijin.) [1] | Wang, Weijun (Wang, Weijun.) [2] | Chen, Mingming (Chen, Mingming.) [3] | Wan, Qing (Wan, Qing.) [4] | Wang, Caicheng (Wang, Caicheng.) [5] | Knopp, Dietmar (Knopp, Dietmar.) [6] | Tang, Dianping (Tang, Dianping.) [7] (Scholars:唐点平)

Indexed by:

EI SCIE

Abstract:

Beyond extraordinary in vivo accurate gene editing and regulation capabilities, the CRISPR-Cas-associated biotechnology has created a new era of in vitro nucleic acid sensing due to its inherent high-efficiency enzyme cleavage activity and robustness. However, most of the existing CRISPR-Cas systems are largely involve fluorescent reporters or lateral flow strips biosensor and can?t fully explore their potential applications (sensitivity and field-deployable) due to the lack of effective signal transduction and wireless data transmission with smartphone readout. Herein, a CRISPR-Cas12a-mediated instrument-free based on flexible interdigitated electrodes-modified piezoresistive block [abrasive paper-molded microstructure polydimethylsiloxane (PDMS) and MXene (Ti3C2Tx)-PEDOT:PSS film] was designed for point-of-care of human papillomavirus (HPV)-related DNA with integrated-module smartphone visual readout. Biotin/thiol-modification single-stranded DNA (ssDNA), acts as a linker between Au@Pt nanoparticles (Au@PtNPs) and streptavidin-coated magnetic bead (MB), are non-specifically cleaved by Cas12a when the guide RNA binds to the target HPV-DNA. Released and separated Au@PtNPs efficiently catalyzes H2O2 to O2, and further compress the Ti3C2Tx-PEDOT:PSS/PDMS in a 3D-printed home-made pressure-tight vessel, thus causing the increasing current of the whole circuit thanks to contacting deformation of Ti3C2Tx-PEDOT:PSS/PDMS module and interdigital electrode. After integrating the Bluetooth device and wireless sensing technology in the circuit, the current signal of the target DNA can be wirelessly collected and recorded in real-time and further transmitted/displayed to the mobile terminal of the smartphone. This all-in-one detection mode not only bridges the technological gap between biological signal conduction, wireless transmission, and smartphone interface but also improves the portability and the sensitivity (more than one order of magnitude lower than that of traditional CRISPR-Cas12a biosensors). We expect that a powerful CRISPR-Cas12a system coupled with piezoresistive sensor with wireless transmission technology will become a great demonstration and widely used in real-time wireless biomedical analysis, portable point-of-care health monitoring, and molecular diagnostics.

Keyword:

CRISPR-Cas12a MXene-PEDOT Piezoresistive PSS Spinous microstructure Wireless biosensor

Community:

  • [ 1 ] [Zeng, Ruijin]Fuzhou Univ, Dept Chem, Key Lab Analyt Sci Food Safety & Biol MOE & Fujia, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
  • [ 2 ] [Wang, Weijun]Fuzhou Univ, Dept Chem, Key Lab Analyt Sci Food Safety & Biol MOE & Fujia, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
  • [ 3 ] [Chen, Mingming]Fuzhou Univ, Dept Chem, Key Lab Analyt Sci Food Safety & Biol MOE & Fujia, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
  • [ 4 ] [Tang, Dianping]Fuzhou Univ, Dept Chem, Key Lab Analyt Sci Food Safety & Biol MOE & Fujia, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
  • [ 5 ] [Wan, Qing]Hubei Univ Sci & Technol, Sch Elect & Informat Engn, Xianning 437100, Peoples R China
  • [ 6 ] [Knopp, Dietmar]Tech Univ Munich, Inst Hydrochem, Chair Analyt Chem & Water Chem, Marchioninistr 17, D-81377 Munich, Germany
  • [ 7 ] [Wang, Caicheng]Fujian Agr & Forestry Univ, State Key Lab Ecol Pest Control Fujian & Taiwan C, Key Lab Biopesticide & Chem Biol, Fuzhou 350002, Peoples R China

Reprint 's Address:

  • 唐点平

    [Tang, Dianping]Fuzhou Univ, Dept Chem, Key Lab Analyt Sci Food Safety & Biol MOE & Fujia, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China

Show more details

Related Keywords:

Source :

NANO ENERGY

ISSN: 2211-2855

Year: 2021

Volume: 82

1 9 . 0 6 9

JCR@2021

1 6 . 8 0 0

JCR@2023

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:142

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 301

SCOPUS Cited Count: 308

ESI Highly Cited Papers on the List: 21 Unfold All

  • 2025-1
  • 2024-11
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-9

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:41/10117365
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1