Indexed by:
Abstract:
Charge separation and transfer are essential for efficient photocatalytic reactions, in which the charge carrier dynamics could be optimized by the rational design of composition and nanomorphology. Inspired in nature that vine can effectively harvest sunlight and present indomitable vitality, a novel raspberry plant-like ternary heterostructure has been constructed for the first time. Its novel structure originates from anchoring raspberry-like porous Cd0.5Zn0.5S nanosphere on a highly conductive matrix composited of MoS2 nanosheets and multiwall carbon nanotubes (CNT). The ternary CNT@MoS2/Cd0.5Zn0.5S (C@M/CZS) system of mutual benefits is constructed of 1D CNT as 'stems', 2D MoS2 nanosheets as 'leaves' and Cd0.5Zn0.5S nanospheres as 'fruits'. The constructed raspberry plant-like C@M/CZS heterostructure exhibits a high-efficient photocatalytic H-2 evolution rate of 46.23 mmol.g(-1).h(-1), which is 51.9 times that of the original Cd0.5Zn0.5S. It is found that the vine-like CNT@MoS2 matrix and interactive ternary heterostructure are favorable for effective visible-light absorption and charge carriers' separation-transfer-reaction, and thus improving the photostability and photocatalytic performance of the biomimetic photocatalytic system.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2021
Volume: 565
7 . 3 9 2
JCR@2021
6 . 3 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: