Indexed by:
Abstract:
The present work reported a facile and simple in situ solvothermal growth method for immobilization of metal-organic framework UiO-66 via covalent bonding on amino functional silica fiber for highly sensitive solid-phase microextraction (SPME) of ten polycyclic aromatic hydrocarbons (PAHs) by coupling with gas chromatography-mass spectrometry (GC-MS) analysis. The developed SPME coated fiber has been characterized through SEM, TGA and XRD, confirmed the coating thickness of similar to 25 mu m with high thermal and chemical stability. Under optimized conditions, the obtained method exhibited satisfactory linearity in range of 1.0-5000.0 ng L-1 for all the PAHs. The low detection limits were from 0.28 ng L-1 to 0.60 ng L-1 (S/N =3). The UiO-66 coated fibers showed good repeatability (RSDs less than 8.2%, n=5) and satisfying reproducibility between fiber to fiber (RSDs less than 8.9%, n = 5). This method was successfully used for simultaneous determination of ten PAHs from Minjiang water and soil samples with satisfactory recoveries of 87.0-113.6% and 83.8-116.7%, respectively. Experimental results shows that the chemical bonding approach has dramatically improve the stability and lifetime of pure MOFs coating for SPME in sample pretreatment. (C) 2016 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF CHROMATOGRAPHY A
ISSN: 0021-9673
Year: 2016
Volume: 1436
Page: 1-8
3 . 9 8 1
JCR@2016
3 . 8 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:235
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 85
SCOPUS Cited Count: 89
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2