Indexed by:
Abstract:
[Background] Traditional methods, due to their static receptive field design, struggle to adapt to the significant scale differences among cars, pedestrians, and cyclists in urban autonomous driving scenarios. Moreover, cross-scale feature fusion often leads to hierarchical interference. [Methodology] To address the key challenge of cross-scale representation consistency in 3D object detection for multi-class, multi-scale objects in autonomous driving scenarios, this study proposes a novel method named VoxTNT. VoxTNT leverages an equalized receptive field and a local-global collaborative attention mechanism to enhance detection performance. At the local level, a PointSetFormer module is introduced, incorporating an Induced Set Attention Block (ISAB) to aggregate fine-grained geometric features from high-density point clouds through reduced cross-attention. This design overcomes the information loss typically associated with traditional voxel mean pooling. At the global level, a VoxelFormerFFN module is designed, which abstracts non-empty voxels into a super-point set and applies cross-voxel ISAB interactions to capture long-range contextual dependencies. This approach reduces the computational complexity of global feature learning from O(N2) to O(M2) (where M © 2025 Science Press. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Geo-Information Science
ISSN: 1560-8999
Year: 2025
Issue: 6
Volume: 27
Page: 1361-1380
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: