Indexed by:
Abstract:
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving. In recent years, the emergence of pseudo point clouds has led to an increasing number of 3D object detection tasks introducing this modality, but not every point in the pseudo point cloud generated by depth completion is reliable. In order to better utilize pseudo point clouds in 3D object detection tasks based on point cloud image fusion, we propose the EppNet framework in this paper, which enables the network to learn the anti noise features of pseudo point clouds. In this framework, we use VoxelNet [1] and VirConv Net [2] to extract features from point clouds and pseudo point clouds, respectively. Besides, we utilize a attentive RoI fusion strategy to make fuller use of information from different types of point clouds. Extensive experiments on KITTI, a benchmark for real-world traffic object identification, revealed that EppNet is able to perform favorably in comparison to earlier, well-respected detectors. © 2024 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2024
Page: 29-32
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: