Abstract:
针对现有建筑能耗预测方法难以有效捕捉能耗数据多尺度特征和时序依赖关系的不足,提出一种融合注意力机制和CNN-Bi-LSTM的建筑能耗预测新方法。首先,采用平滑线性插值法处理数据缺失问题;其次,构建多尺度特征提取模块,通过卷积神经网络(CNN)分层捕获能耗数据的局部和全局特征;然后,引入双向长短期记忆网络(Bi-LSTM)建模时序依赖关系,并结合注意力机制自适应加权关键特征;最终实现多尺度时空特征的有效融合。实验结果表明,所提方法在MSE、R
Keyword:
Reprint 's Address:
Email:
Source :
建筑电气
Year: 2025
Issue: 06
Volume: 44
Page: 59-64
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: