Indexed by:
Abstract:
Layered double hydroxides (LDHs) have long been a hot research topic in supercapacitors because of their abundant reaction sites. However, LDH nanosheets tend to easily stack together during the synthesis process. Therefore, in this paper, a simple and effective stirring aging method was used to grow ZIF-67 uniformly on the surface of Ni-Mn LDH. The strategy can fully utilize the high specific surface area of ZIF-67 to provide a large number of active sites for Ni-Mn LDHs, which results in a significant increase of the capacitance contribution. The core-shell structure NM LDHs@Z has significant redox peaks and the surface redox reaction. The capacitance contribution of NM LDHs@Z increase from 21.7 % to 91.4 %. But it does not belong battery-type supercapacitors from the CV curves. It is necessary to find out a better characterization parameter to estimate the type of battery or capacitor, instead of the CV and GCD curve shapes. The Ni-Mn LDHs@ZIF-67 composites can achieve a specific capacitance of 1340 F g- 1at a current density of 1 A g-1. As the specific current density is increased to 10 A g- 1, the capacity retention can reach about 75 %, which is superior to that of the Ni-Mn LDHs (60 %). The hybrid supercapacitor is composed of Ni-Mn LDHs@ZIF-67 composite as the cathode and activated carbon (AC) as the anode with a 128 F g- 1 specific capacitance at a 1 A g- 1 current density and a 45.8 Wh kg- 1 energy density at a 850 W kg- 1 power density. The Ni-Mn LDH@ZIF-67 composites has a potential application in hybrid supercapacitors.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2025
Volume: 507
1 3 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1