Indexed by:
Abstract:
Identifying agricultural machinery operations is crucial for enhancing agricultural productivity and promoting the transition to data-driven agriculture. Current research focuses solely on administrative divisions, overlooking the links between machinery movement, natural spatial patterns, and spatiotemporal dependencies. The direct clustering of GNSS points is inefficient and incurs substantial computational costs. In response to these challenges, we introduce an unsupervised clustering method based on multiscale spatiotemporal partitioning, which systematically integrates spatial and temporal dimensions to analyze GNSS trajectory data. By designing multiscale grids and temporal partitions, we efficiently processed high-dimensional trajectory data by employing t-SNE and K-means++ algorithms for dimensionality reduction and clustering, and the visualization validated the clustering effectiveness. When applied to GNSS data from the wheat harvest season in China, the results revealed distinct patterns of harvester movement, including trans-regional movement trends. The geogrids are clustered into four groups, each of which exhibits a distinct spatiotemporal relationship. A combined geogrid analysis with administrative regions identified Anhui as having the highest flow density, whereas Henan had the most concentrated areas of trans-regional harvester flow. These findings offer valuable insights for planning harvester operations, particularly in trans-regional harvester management, by understanding complex spatiotemporal dynamics.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF DIGITAL EARTH
ISSN: 1753-8947
Year: 2025
Issue: 1
Volume: 18
3 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2