• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Huang, Shikai (Huang, Shikai.) [1] | Guo, Jin (Guo, Jin.) [2] (Scholars:郭进) | Mei, Liang (Mei, Liang.) [3] | Wang, Fang (Wang, Fang.) [4] | Wang, Changjian (Wang, Changjian.) [5] | Lin, Jin (Lin, Jin.) [6]

Indexed by:

EI Scopus SCIE

Abstract:

Explosion venting technology is an effective means of reducing explosive hazards, and hydrogen volume fraction (chi) is one of the important parameters affecting its effectiveness. The vent covers, as a key part of the explosion venting application, consist of two types: inertia-free (e.g., membranes) and inertial (e.g., panels). chi has been extensively studied using inertial-free vent covers, but very limited work has been done using an inertial vent cover. Hence, the effects of chi, ranging from 0 to 1.0, on the vented H-2/CH4/air explosion were studied in a chamber with a hinged aluminum panel, and the explosion overpressure during venting was simulated by FLACS software. The results show that the flame bubble becomes larger and brighter with increasing chi. However, the time for the flame to travel through the vent (t(out)) and the opening angle of the hinged panel at the time of t(out) constantly decreases as chi increases from 0 to 1.0. In the tests with chi <= 0.6, p(3) caused by acoustically enhanced combustion becomes the pressure peak with the highest amplitude in the internal pressure profile, but the pressure peak p(2) induced by the external explosion dominates the internal pressure trace for chi > 0.6. In comparison to the H-2/CH4/air deflagration experiments using an inertialess vent cover, the shape of the external fireball is quite similar for smaller chi in the current study with an inertial vent panel. However, the use of the inertial vent panel results in a more flattened external fireball for larger chi. The highest amplitude of the external pressure peak (p(ext)) and the maximum reduced overpressure (p(red)) increase with increasing chi. Whether the studies are performed with inertial and inertialess vent covers or FLACS simulations, the formation time (Delta t) of p(ext )decreases linearly with increasing chi, but p(red) increases linearly with S-2(l). The explosion overpressure simulated by FLACS is relatively close to the experimental results, and in particular, the simulated p(red) agrees very well with the experimental value.

Keyword:

Flame propagation H-2/CH4/Air explosion Hinged vent panel Hydrogen volume fraction Overpressure

Community:

  • [ 1 ] [Huang, Shikai]Fuzhou Univ, Coll Environm & Safety Engn, Fuzhou 350116, Fujian, Peoples R China
  • [ 2 ] [Guo, Jin]Fuzhou Univ, Coll Environm & Safety Engn, Fuzhou 350116, Fujian, Peoples R China
  • [ 3 ] [Mei, Liang]Fuzhou Univ, Coll Environm & Safety Engn, Fuzhou 350116, Fujian, Peoples R China
  • [ 4 ] [Wang, Fang]Fujian Special Equipment Inspect & Res Inst, Fuzhou 350008, Peoples R China
  • [ 5 ] [Wang, Changjian]Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Anhui, Peoples R China
  • [ 6 ] [Lin, Jin]Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230027, Peoples R China

Reprint 's Address:

  • 郭进

    [Guo, Jin]Fuzhou Univ, Coll Environm & Safety Engn, Fuzhou 350116, Fujian, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES

ISSN: 0950-4230

Year: 2025

Volume: 94

3 . 6 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:118/10070355
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1