Abstract:
为解决CLAHE算法硬件资源消耗量大的问题,从硬件实现的角度对算法进行两方面改进.针对裁剪阈值,提出了一种普适性裁剪阈值确定方法,基于信息熵和结构相似性构造了品质因数,以品质因数最佳作为评判标准确定硬件实现中的裁剪阈值,在平衡图像增强对比度和失真度的同时,避免消耗硬件资源对图像数据本身进行大量计算.针对超阈值像素再分配,提出了一种改进型分配方法,将超阈值像素仅均分给未超阈值的灰度级,且若其再次超阈值则停止分配,在降低图像失真度的同时,避免反复像素分配带来的硬件开销.在改进型CLAHE算法的基础上,完成基于FPGA的低照度图像增强系统实现,实验结果表明,在普适性裁剪阈值下,增强后的图像能够普遍获得更高的品质因数,具有更佳的综合效果;改进型像素再分配方法对比常规方法,图像在信息熵平均损失3.28%的代价下结构相似性可平均提升8.88%;低照度图像增强系统可实现640×480@60 fps的图像采集与处理.本设计可为图像增强算法的硬件实现提供一种新的参考.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电子测量技术
ISSN: 1002-7300
Year: 2024
Issue: 10
Volume: 47
Page: 126-133
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: