Indexed by:
Abstract:
This work introduces a new strategy of a single-atom nest catalyst, whereby several single atoms are positioned closely, aiming to achieve the dual benefits of high atom-utilization efficiency while avoiding the steric hindrance in the coupling reaction. As a proof of concept, Pt single-atom nests, where the adjacent Pt single atoms are approximately 4 & Aring; apart, are precisely engineered on the TiO2 photocatalyst for photocatalytic non-oxidative coupling of methane. The Pt single-atom nest photocatalyst demonstrates remarkable activity, achieving a C2H6 yield and turnover frequency of 251.6 mu mol g(cat)(-1) h(-1) and 20 h(-1), respectively, representing a 3.2-fold improvement compared to the Pt single-atom photocatalyst. Density functional theory calculations reveal that the Pt single-atom nest can significantly decrease the energy barrier for the activation of both CH4 molecules in the coupling process.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
ISSN: 0002-7863
Year: 2024
Issue: 34
Volume: 146
Page: 24150-24157
1 4 . 5 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: