Query:
学者姓名:龙金林
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
CH3OH is the most desired product of photocatalytic CH4 conversion. The prominent metal-decorated photocatalyst is challenging in both high yield and selectivity for CH3OH products due to over-oxidation by center dot OH mechanism. Here, interstitial Zn is fabricated into ZniO to induce the formation of Zn atom island for rapid single electron reduction of O2 into center dot OOH instead of center dot OH for the selective combination with methyl into CH3OOH. AuPd alloy is simultaneously decorated on ZniO surface for tuning CH3OOH adsorption and reduction into CH3OH. The synergy of Zn atom island and AuPd alloy achieve a tandem reaction pathway (CH4 -> CH3OOH -> CH3OH) for an unprecedented CH3OH yield of 2444 mmol gAuPd-1 h-1 (or 8800 mu mol gcat-1 h-1) with 98.3% selectivity, which bypasses the center dot OH mechanism for tuning the high selectivity of CH3OH. An apparent quantum efficiency of 18.53% at 370 nm for CH4 conversion are super to the reported photocatalytic systems. Thus, this work provides the new strategy of the synergetic atom island and metal alloy photocatalysts through a tandem reaction pathway to mediate the photocatalytic selective oxidation of CH4 into the desired CH3OH.
Keyword :
atom island atom island AuPd alloy AuPd alloy methanol selectivity methanol selectivity photocatalysis photocatalysis tandem reaction tandem reaction
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Xiao, Zhen , Shen, Jinni , Jiang, Jianing et al. Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
MLA | Xiao, Zhen et al. "Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH" . | ADVANCED FUNCTIONAL MATERIALS (2025) . |
APA | Xiao, Zhen , Shen, Jinni , Jiang, Jianing , Zhang, Jiangjie , Liang, Shuqi , Han, Shitong et al. Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH . | ADVANCED FUNCTIONAL MATERIALS , 2025 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The persistent threats posed by toxic chemical warfare agents (CWAs) such as mustard gas (bis(2-chloroethyl) sulfide, HD) and bacterial contaminants demand the development of innovative, sustainable mitigation strategies. Photocatalytic processes that generate reactive oxygen species (ROS) offer a promising dual-functional approach for both chemical detoxification and antibacterial defense. In this study, two structurally analogous covalent organic frameworks (COFs), BPY-COF and BD-COF, are synthesized using benzotrithiophene as the donor unit paired with bipyridine and biphenyl, respectively. These COFs exhibit high crystallinity, broad-spectrum light absorption, and efficient charge carrier transport, with BPY-COF demonstrating superior performance due to the incorporation of heteroatoms. BPY-COF achieved ultrafast detoxification of the mustard gas simulant 2-chloroethyl ethyl sulfide (CEES) with a half-life of 35 min and 100% selectivity for 2-chloroethyl sulfoxide (CEESO) under white LED light, outperforming BD-COF. Additionally, electrospun composite fibers containing 40 wt.% BPY-COF maintained comparable CEES degradation rates and exhibited over 99% antibacterial efficiency against Escherichia coli and Bacillus subtilis within 60 min. These findings highlight the potential of BPY-COF as a multifunctional photocatalyst for integrated applications in chemical detoxification and antibacterial defense, addressing critical challenges in public health and safety.
Keyword :
antibacterial antibacterial charge transfer charge transfer covalent organic frameworks covalent organic frameworks photocatalytic degradation photocatalytic degradation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhu, Yongchao , Qin, Liyang , Yang, Mingyuan et al. Dual-Functional Benzotrithiophene-Based Covalent Organic Frameworks for Photocatalytic Detoxification of Mustard Gas Simulants and Antibacterial Defense [J]. | SMALL , 2025 , 21 (12) . |
MLA | Zhu, Yongchao et al. "Dual-Functional Benzotrithiophene-Based Covalent Organic Frameworks for Photocatalytic Detoxification of Mustard Gas Simulants and Antibacterial Defense" . | SMALL 21 . 12 (2025) . |
APA | Zhu, Yongchao , Qin, Liyang , Yang, Mingyuan , Shi, Zhicheng , Chen, Hongxuan , Wen, Na et al. Dual-Functional Benzotrithiophene-Based Covalent Organic Frameworks for Photocatalytic Detoxification of Mustard Gas Simulants and Antibacterial Defense . | SMALL , 2025 , 21 (12) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
MXene species have emerged as a class of compelling electrode materials in the field of capacitive deionization (CDI). However, as an excellent member of the MXene family, the Nb4C3Tx has not received much attention in terms of CDI. Herein, we have not only established the feasibility of Nb4C3Tx as a potential desalination electrode materiel but also proposed a wrinkle-engineering strategy that can effectively improve the CDI performance of Nb4C3Tx freestanding membranes. Specifically, the introduction of wrinkles on Nb4C3Tx nanosheets contributes to optimizing the interlayer space, accessibility, conductivity, stability, and CDI performance of the assembled membranes. In particular, the optimized wrinkled Nb4C3Tx membranes can achieve an ultrahigh desalination capacity of similar to 188.2 mg g(-1) at 1.6 V accompanied by a fast adsorption rate of similar to 12.6mg g(-1) min(-1), showing great competitiveness with other MXene individual electrodes. In addition, the as-designed electrodes also exhibit superior cycle desalination stability as well as good applicability to different salts (such as LiCl, KCl, CaCl2, and MgCl2). This work both extends the MXene material applicable to CDI and offers an effective solution for improving the properties of Nb4C3Tx-MXene lamellar membrane electrodes, opening up enormous opportunities for the use of such MXene species in the field of electrochemical desalination.
Keyword :
Capacitive deionization Capacitive deionization Faradaic electrodes Faradaic electrodes Freestanding membranes Freestanding membranes Nb4C3Tx Nb4C3Tx Wrinkle-engineering Wrinkle-engineering
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Liu, Haoyang , Shang, Jing , Liu, Liyan et al. Capacitive deionization using wrinkle-engineered Nb4C3Tx-MXene freestanding membranes [J]. | CHEMICAL ENGINEERING JOURNAL , 2025 , 507 . |
MLA | Liu, Haoyang et al. "Capacitive deionization using wrinkle-engineered Nb4C3Tx-MXene freestanding membranes" . | CHEMICAL ENGINEERING JOURNAL 507 (2025) . |
APA | Liu, Haoyang , Shang, Jing , Liu, Liyan , Yuan, Rusheng , Long, Jinlin , Xu, Chao . Capacitive deionization using wrinkle-engineered Nb4C3Tx-MXene freestanding membranes . | CHEMICAL ENGINEERING JOURNAL , 2025 , 507 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Liquid metals (LMs) exhibit superior conductivity, flexibility, and malleability, empowering their versatility across multiple fields. It was prevalently believed, albeit lacking in-depth mechanistic insights, that these features stem from high atomic degrees of freedom. In this work, we substantiate the intense and random atomic motion in LMs through the interplay of theory and in situ/operando experiments. In particular, we visualize structural oscillations and crystallographic orientation variations in near-melting LMs; the disordered LM atoms are not confined by rigid crystal lattices, in contrast to their solid counterparts. Owing to the high atomic degrees of freedom, LMs possess adaptive surfaces capable of dynamically conforming to adsorbate configurations during electrocatalysis, especially electrochemical CO2 reduction (CO2R) that has been hindered by the hardship of key species adsorption/activation/desorption on solid-state catalysts. We then pressurize the CO2 to further enhance the adaptability of the LM surface in its interactions with adsorbates. As a result, the reactants and key intermediates are greatly enriched on the liquid metal surface, yielding an even higher CO2R reactivity compared to the ambient-pressure scenario and reaffirming the mechanistic insights.
Keyword :
CO2 reduction CO2 reduction High degree of freedom High degree of freedom High-pressureelectrocatalysis High-pressureelectrocatalysis Liquid metals Liquid metals Structural oscillation Structural oscillation Surface adaptability Surface adaptability
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhao, Jiwu , Jin, Mengtian , Huang, Haowei et al. Unlocking Atomic Degrees of Freedom in Liquid Metals for Accelerated Electrocatalytic Reactions [J]. | ACS CATALYSIS , 2025 , 15 (4) : 3505-3514 . |
MLA | Zhao, Jiwu et al. "Unlocking Atomic Degrees of Freedom in Liquid Metals for Accelerated Electrocatalytic Reactions" . | ACS CATALYSIS 15 . 4 (2025) : 3505-3514 . |
APA | Zhao, Jiwu , Jin, Mengtian , Huang, Haowei , Guo, Haoquan , Han, Yu , Huang, Liang et al. Unlocking Atomic Degrees of Freedom in Liquid Metals for Accelerated Electrocatalytic Reactions . | ACS CATALYSIS , 2025 , 15 (4) , 3505-3514 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
H2 and O2 evolutions occur simultaneously for conventional particulate photocatalytic overall water splitting (PPOWS), leading to a significant backward reaction and the formation of an explosive H2/O2 gas mixture. This is an issue that must be addressed prior to industrialization of PPOWS. Here, a convenient, cost-effective, and scalable concept is introduced to uncouple hydrogen and oxygen production for PPOWS. Based on this idea, a three-component photocatalyst, Co(5 %)-HPCN/(rGO/Pt), is constructed, consisting of a photoresponsive chip (HPCN), a H2 evolution cocatalyst (rGO/Pt), and a cobalt complex capable of reversibly binding O2 (Co), to achieve the decoupling of PPOWS under alternating UV and visible light irradiations. The asynchronous O2 and H2 evolution strategy have considerable flexibility regarding the photocatalyst structure and light sources suitable for PPOWS.
Keyword :
carbon nitride chips carbon nitride chips overall water splitting overall water splitting photocatalytic photocatalytic PPOWS decoupling PPOWS decoupling reaction mechanism reaction mechanism
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Liu, Dan , Xu, Huihui , Shen, Jinni et al. Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder [J]. | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2025 , 64 (9) . |
MLA | Liu, Dan et al. "Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder" . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 64 . 9 (2025) . |
APA | Liu, Dan , Xu, Huihui , Shen, Jinni , Wang, Xun , Qiu, Chengwei , Lin, Huaxiang et al. Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2025 , 64 (9) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Photocatalytic water splitting on metal oxides often faces oxygen evolution inefficiency, reflecting the complex interplay of its two half-reactions. Strategies like heterojunctions, cocatalyst loading, or noble metal nano- particles addition have been explored to address this. Using gamma- Ga 2 O 3 nanosheets as a model, we uncovered the formation of-O-O- species as the key barrier to stoichiometric splitting. To tackle this, a strategy was devised, Sr-doping to inhibit surface peroxidation. The resultant Sr-doped gamma- Ga 2 O 3 (Sr-Ga2O3) significantly improved activity and stability, achieving balanced H2 and O2 production under 125 W mercury lamp light. Upon further enhancement with Rh/Cr2O3 cocatalyst via photoreduction, the Sr-Ga2O3/(Rh/Cr2O3) composite demonstrated a remarkable 173.3 mu mol & sdot;h-1 H2 and 86.7 mu mol & sdot;h-1 O2 evolution rate, 8.0 times higher than gamma- Ga 2 O 3 alone, with a 34.1 % quantum efficiency under 260 nm light. This represents a record performance for Ga2O3-based photo- catalytic water splitting. Mechanistically, Sr doping alters surface chemistry to favor direct oxygen release. Our study elucidates molecular-level insights into non-stoichiometric splitting mechanisms and offers a potent strategy to boost metal oxide photocatalysts' water-splitting efficiency.
Keyword :
Photocatalytic stoichiometric water splitting Photocatalytic stoichiometric water splitting Sr-doped Sr-doped
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Shen, Jinni , Zhong, Yuhua , Lin, Jianhan et al. Non-stoichiometric problem of photocatalytic water splitting on γ-Ga2O3: Cause and solution [J]. | JOURNAL OF CATALYSIS , 2025 , 443 . |
MLA | Shen, Jinni et al. "Non-stoichiometric problem of photocatalytic water splitting on γ-Ga2O3: Cause and solution" . | JOURNAL OF CATALYSIS 443 (2025) . |
APA | Shen, Jinni , Zhong, Yuhua , Lin, Jianhan , Li, Haifeng , Qiu, Chengwei , Liu, Xu et al. Non-stoichiometric problem of photocatalytic water splitting on γ-Ga2O3: Cause and solution . | JOURNAL OF CATALYSIS , 2025 , 443 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
This work introduces a new strategy of a single-atom nest catalyst, whereby several single atoms are positioned closely, aiming to achieve the dual benefits of high atom-utilization efficiency while avoiding the steric hindrance in the coupling reaction. As a proof of concept, Pt single-atom nests, where the adjacent Pt single atoms are approximately 4 Å apart, are precisely engineered on the TiO2 photocatalyst for photocatalytic non-oxidative coupling of methane. The Pt single-atom nest photocatalyst demonstrates remarkable activity, achieving a C2H6 yield and turnover frequency of 251.6 μmol gcat-1 h-1 and 20 h-1, respectively, representing a 3.2-fold improvement compared to the Pt single-atom photocatalyst. Density functional theory calculations reveal that the Pt single-atom nest can significantly decrease the energy barrier for the activation of both CH4 molecules in the coupling process. © 2024 American Chemical Society.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhang, P. , Li, J. , Huang, H. et al. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane [J]. | Journal of the American Chemical Society , 2024 , 146 (34) : 24150-24157 . |
MLA | Zhang, P. et al. "Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane" . | Journal of the American Chemical Society 146 . 34 (2024) : 24150-24157 . |
APA | Zhang, P. , Li, J. , Huang, H. , Sui, X. , Zeng, H. , Lu, H. et al. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane . | Journal of the American Chemical Society , 2024 , 146 (34) , 24150-24157 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Converting clean solar energy into chemical energy through artificial photosynthesis is an effective solution to solve the energy and environmental issues. Here, we report a Cs3Bi2Br9/Bi2WO6 (CBB/BWO) Z-scheme heterojunction constructed via electrostatic self-assembly, which facilitates efficient separation of photogenerated carriers and ensures the corresponding redox capacity of both components. By sharing Bi atoms, a Br-Bi-O bond is established between CBB and BWO, serving as an "electron bridge". The electrons generated by BWO are efficiently channeled to CBB through the heterojunction-formed "electron bridge", thereby achieving effective photocatalytic CO2 reduction. Under simulated sunlight conditions, it exhibits the highest CO yield of 72.52 mu mol g(-1) (without the addition of any precious metal, photosensitizers or sacrifices), which is approximately 7-fold and 18-fold greater than that of pure CBB and BWO, respectively. This work provides a more profound comprehension of the regulation of electron transfer through interfacial chemical bonds, thereby proposing a promising strategy for the development of efficient heterojunction photocatalysts for CO2 photoreduction.
Keyword :
Bi2WO6 Bi2WO6 CO2 reduction CO2 reduction Perovskite Perovskite Photocatalysis Photocatalysis Z-scheme Z-scheme
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Liu, Haolan , Sun, Jingjing , Lin, Qianying et al. An Electron Bridge of Shared Atoms Mediated Cs3Bi2Br9/Bi2WO6 Z-Scheme Heterojunction for Photocatalytic CO2 Reduction [J]. | CHEMCATCHEM , 2024 , 16 (22) . |
MLA | Liu, Haolan et al. "An Electron Bridge of Shared Atoms Mediated Cs3Bi2Br9/Bi2WO6 Z-Scheme Heterojunction for Photocatalytic CO2 Reduction" . | CHEMCATCHEM 16 . 22 (2024) . |
APA | Liu, Haolan , Sun, Jingjing , Lin, Qianying , Wang, Ying , Wang, Shuo , Wang, Shuowen et al. An Electron Bridge of Shared Atoms Mediated Cs3Bi2Br9/Bi2WO6 Z-Scheme Heterojunction for Photocatalytic CO2 Reduction . | CHEMCATCHEM , 2024 , 16 (22) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Aiming to improve the decay in thermochemical energy storage (TCES) performance of CaO-based looping materials with the number of carbonation/calcination cycles, a series of Y/Mg-codoped CaO-based materials were prepared by using the classical sol-gel method and citric acid as a carbon template to enhance the porosity and specific surface area. The structural characterizations showed that Y and Mg were presented in two forms. Part of Y/Mg was presented in the form of Y2O3 and MgO nanoparticles with an average size of 15 and 40 nm, respectively. These Y2O3 and MgO nanoparticles with high Tammann temperature and thermal conductivity were highly dispersed to retard the sintering and growth of CaO grains. The rest of Y and Mg were doped into the framework of the CaO lattice in atomic form by substituting Ca atoms. These Y and Mg created a large amount of the oxygen vacancies surrounding Ca atoms to facilitate the electron transfer from Ca2+ ions to dopants, which enhanced the CO2 capture capacity of CaO-based materials by improving the kinetics of the carbonation reaction. As a result, the optimal CaO-based composite denoted as Ca/Y5/Mg10 exhibited a high initial energy storage density of up to >2300 kJ/kg and held an excellent looping reaction stability after 25 carbonation/calcination cycles owing to the cooperation of Y with Mg additives. This work provided effective and economical CaO-based looping materials for application in thermochemical energy storage.
Keyword :
CaO-based materials CaO-based materials carbonation/calcination cycles carbonation/calcination cycles sintering resistance sintering resistance thermochemical energy storage thermochemical energy storage Y/Mg codoping Y/Mg codoping
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Jifu , Xiong, Wei , Ding, Zhengxin et al. Enhancing the Stability of CaO-Based Looping Materials in Thermochemical Energy Storage by Codoping Y and Mg [J]. | ACS APPLIED ENERGY MATERIALS , 2024 , 7 (24) : 12165-12173 . |
MLA | Wang, Jifu et al. "Enhancing the Stability of CaO-Based Looping Materials in Thermochemical Energy Storage by Codoping Y and Mg" . | ACS APPLIED ENERGY MATERIALS 7 . 24 (2024) : 12165-12173 . |
APA | Wang, Jifu , Xiong, Wei , Ding, Zhengxin , Wang, Pengzhao , Long, Jinlin . Enhancing the Stability of CaO-Based Looping Materials in Thermochemical Energy Storage by Codoping Y and Mg . | ACS APPLIED ENERGY MATERIALS , 2024 , 7 (24) , 12165-12173 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Bacterial infections are a major public health challenge around the world. The development of novel surface coatings that effectively inhibit bacterial adhesion, proliferation and growth is a critical step in addressing this global challenge. Photocatalytic antibacterial therapy has proven to be an effective approach and has received increasing attention. However, it is still a challenge to obtain coatings with both antibacterial adhesion and durable photocatalytic antibacterial functions. Herein, an acridine-based coating with antibacterial adhesion and photocatalytic antibacterial properties was prepared by simple methods (i.e., spin-coating, spray-coating, and drop-coating) and can be applied to various substrates. The bacterial anti-adhesion test results showed that the coating could effectively prevents the adhesion of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), indicating the strong anti-fouling capability. The acridine-based coating demonstrated durable photocatalytic antimicrobial activity, remaining 99.3 % antibacterial effective against all three bacterial strains even after 30 days exposed to visible light. The coating can significantly reduce or eliminate the risk of contamination and cross-contamination, making it ideal for use in public healthcare environments.
Keyword :
Antibacterial Antibacterial Anti-fouling Anti-fouling Coating Coating Photocatalytic Photocatalytic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Kang, Linfeng , Peng, Houqian , Yang, Mingyuan et al. Dual-functional acridine-based coatings with anti-bacterial adhesion and durable photocatalytic antibacterial [J]. | PROGRESS IN ORGANIC COATINGS , 2024 , 194 . |
MLA | Kang, Linfeng et al. "Dual-functional acridine-based coatings with anti-bacterial adhesion and durable photocatalytic antibacterial" . | PROGRESS IN ORGANIC COATINGS 194 (2024) . |
APA | Kang, Linfeng , Peng, Houqian , Yang, Mingyuan , Hu, Ke , Lin, Yihui , Zhu, Yongchao et al. Dual-functional acridine-based coatings with anti-bacterial adhesion and durable photocatalytic antibacterial . | PROGRESS IN ORGANIC COATINGS , 2024 , 194 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |