• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:付贤智

Refining:

Source

Submit Unfold

Co-

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 81 >
Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles SCIE
期刊论文 | 2025 , 361 | SEPARATION AND PURIFICATION TECHNOLOGY
Abstract&Keyword Cite Version(2)

Abstract :

Localized surface plasmon resonance (LSPR) on base-metal nanoparticles holds significant potential for applications in diverse fields owing to its capability for electric field enhancement. Nevertheless, the efficiency of single-energy conversion remains a limiting factor for LSPR applications. This study investigated the utilization of hot carriers, generated through the LSPR effect in copper nanoparticles (Cu NPs) supported on ZrO2, to enhance the performance of the thermal catalytic reverse water-gas shift (RWGS) reaction. Finite difference time domain simulations and Kelvin probe force microscopy (KPFM) tests demonstrated that LSPR induces a strong electric field, facilitating the excitation of hot carriers in Cu NPs. In-situ DRIFTS analysis revealed that hot electrons promote the formation of formate species (HCOO*) and their subsequent transformation into CO, identified as the rate-determining step. Furthermore, in-situ H2 pulse and quasi-in situ EPR analyses indicated that photo-assisted thermal conditions enhance the conversion of H2 into active hydrogen species (H* or H + ) on Cu NPs, promoting the generation of oxygen vacancies and the transformation of intermediates. Constrained density functional theory calculations further demonstrated that visible light irradiation reduces energy barriers, thereby increasing reaction efficiency. The findings provide valuable insights into the contribution of LSPR-induced hot electrons in advancing the RWGS reaction.

Keyword :

Cu/ZrO 2 Cu/ZrO 2 Hot carriers Hot carriers Localized surface plasmon resonance Localized surface plasmon resonance Oxygen vacancies Oxygen vacancies Reverse water gas shift reaction Reverse water gas shift reaction

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Ni, Wenkang , Zhang, Xiaoyan , Yue, Xuanyu et al. Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 361 .
MLA Ni, Wenkang et al. "Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles" . | SEPARATION AND PURIFICATION TECHNOLOGY 361 (2025) .
APA Ni, Wenkang , Zhang, Xiaoyan , Yue, Xuanyu , Zhang, Zizhong , Zhang, Yongfan , Wang, Ke et al. Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 361 .
Export to NoteExpress RIS BibTex

Version :

Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles Scopus
期刊论文 | 2025 , 361 | Separation and Purification Technology
Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles EI
期刊论文 | 2025 , 361 | Separation and Purification Technology
Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization SCIE
期刊论文 | 2025 , 360 | SEPARATION AND PURIFICATION TECHNOLOGY
Abstract&Keyword Cite Version(2)

Abstract :

Persulfate-based advanced oxidation technology, due to its high efficiency, controllability, and safety, shows great potential for the deep removal of organic pollution, yet its mineralization efficiency is hindered by the lack of synergy between radical and nonradical pathways. Herein, we present defective carbon nitride (DCN) as a highly efficient peroxymonosulfate (PMS) activation catalyst that couples nonradical aggregation with radical mineralization. The tailored electronic structure of the DCN framework enhances visible-light absorption, photogenerated charge separation, and electron transfer ability due to a built-in electric field. DCN effectively interacts with PMS to rapidly accumulate pollutants from the bulk solution onto the catalyst surface via an electron-transfer pathway. Simultaneously, the accumulated pollutants undergo in-situ decomposition by center dot SO4- radicals formed on the catalyst surface under visible light irradiation, achieving a remarkable 98 % mineralization ratio. The mixed-pathway process demonstrates excellent cyclic stability and environmental robustness. This study introduces a novel strategy to enhance the catalytic oxidation performance of metal-free catalysts by controlling persulfate activation pathways for water decontamination.

Keyword :

Carbon nitride Carbon nitride Peroxymonosulfate Peroxymonosulfate Photocatalysis Photocatalysis Pollutant mineralization Pollutant mineralization Synergistic Synergistic

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Ming, Hongbo , Ruan, Wenqi , Yuan, Xiaoying et al. Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 .
MLA Ming, Hongbo et al. "Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization" . | SEPARATION AND PURIFICATION TECHNOLOGY 360 (2025) .
APA Ming, Hongbo , Ruan, Wenqi , Yuan, Xiaoying , Cheng, Jiajia , Yang, Can , Hou, Yidong et al. Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 .
Export to NoteExpress RIS BibTex

Version :

Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization Scopus
期刊论文 | 2025 , 360 | Separation and Purification Technology
Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization EI
期刊论文 | 2025 , 360 | Separation and Purification Technology
Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder SCIE
期刊论文 | 2025 , 64 (9) | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
WoS CC Cited Count: 1
Abstract&Keyword Cite Version(2)

Abstract :

H2 and O2 evolutions occur simultaneously for conventional particulate photocatalytic overall water splitting (PPOWS), leading to a significant backward reaction and the formation of an explosive H2/O2 gas mixture. This is an issue that must be addressed prior to industrialization of PPOWS. Here, a convenient, cost-effective, and scalable concept is introduced to uncouple hydrogen and oxygen production for PPOWS. Based on this idea, a three-component photocatalyst, Co(5 %)-HPCN/(rGO/Pt), is constructed, consisting of a photoresponsive chip (HPCN), a H2 evolution cocatalyst (rGO/Pt), and a cobalt complex capable of reversibly binding O2 (Co), to achieve the decoupling of PPOWS under alternating UV and visible light irradiations. The asynchronous O2 and H2 evolution strategy have considerable flexibility regarding the photocatalyst structure and light sources suitable for PPOWS.

Keyword :

carbon nitride chips carbon nitride chips overall water splitting overall water splitting photocatalytic photocatalytic PPOWS decoupling PPOWS decoupling reaction mechanism reaction mechanism

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Dan , Xu, Huihui , Shen, Jinni et al. Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder [J]. | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2025 , 64 (9) .
MLA Liu, Dan et al. "Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder" . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 64 . 9 (2025) .
APA Liu, Dan , Xu, Huihui , Shen, Jinni , Wang, Xun , Qiu, Chengwei , Lin, Huaxiang et al. Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder . | ANGEWANDTE CHEMIE-INTERNATIONAL EDITION , 2025 , 64 (9) .
Export to NoteExpress RIS BibTex

Version :

Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder Scopus
期刊论文 | 2025 , 64 (9) | Angewandte Chemie - International Edition
Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder EI
期刊论文 | 2025 , 64 (9) | Angewandte Chemie - International Edition
Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH SCIE
期刊论文 | 2025 | ADVANCED FUNCTIONAL MATERIALS
Abstract&Keyword Cite Version(1)

Abstract :

CH3OH is the most desired product of photocatalytic CH4 conversion. The prominent metal-decorated photocatalyst is challenging in both high yield and selectivity for CH3OH products due to over-oxidation by center dot OH mechanism. Here, interstitial Zn is fabricated into ZniO to induce the formation of Zn atom island for rapid single electron reduction of O2 into center dot OOH instead of center dot OH for the selective combination with methyl into CH3OOH. AuPd alloy is simultaneously decorated on ZniO surface for tuning CH3OOH adsorption and reduction into CH3OH. The synergy of Zn atom island and AuPd alloy achieve a tandem reaction pathway (CH4 -> CH3OOH -> CH3OH) for an unprecedented CH3OH yield of 2444 mmol gAuPd-1 h-1 (or 8800 mu mol gcat-1 h-1) with 98.3% selectivity, which bypasses the center dot OH mechanism for tuning the high selectivity of CH3OH. An apparent quantum efficiency of 18.53% at 370 nm for CH4 conversion are super to the reported photocatalytic systems. Thus, this work provides the new strategy of the synergetic atom island and metal alloy photocatalysts through a tandem reaction pathway to mediate the photocatalytic selective oxidation of CH4 into the desired CH3OH.

Keyword :

atom island atom island AuPd alloy AuPd alloy methanol selectivity methanol selectivity photocatalysis photocatalysis tandem reaction tandem reaction

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Xiao, Zhen , Shen, Jinni , Jiang, Jianing et al. Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH [J]. | ADVANCED FUNCTIONAL MATERIALS , 2025 .
MLA Xiao, Zhen et al. "Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH" . | ADVANCED FUNCTIONAL MATERIALS (2025) .
APA Xiao, Zhen , Shen, Jinni , Jiang, Jianing , Zhang, Jiangjie , Liang, Shuqi , Han, Shitong et al. Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH . | ADVANCED FUNCTIONAL MATERIALS , 2025 .
Export to NoteExpress RIS BibTex

Version :

Synergetic Atom-Island and Metal Alloy Triggering Tandem Reaction for CH4 Photooxidation to CH3OH Scopus
期刊论文 | 2025 | Advanced Functional Materials
Anchoring MnWO4 Nanorods on LaTiO2N Nanoplates for Boosted Visible Light-Driven Overall CO2 Reduction Scopus
期刊论文 | 2024 , 16 (36) , 47741-47750 | ACS Applied Materials and Interfaces
SCOPUS Cited Count: 3
Abstract&Keyword Cite

Abstract :

The photocatalytic conversion of CO2 into hydrocarbon fuel holds immense potential for achieving a carbon closed loop and carbon neutrality. Developing efficient photocatalysts plays a pivotal role in enabling the widespread application of photocatalytic CO2 reduction on a large scale. Herein, a novel S-scheme MnWO4/LaTiO2N heterojunction composite is successfully synthesized by a hydrothermal method. This composite catalyst demonstrates excellent photocatalytic activity in the reduction of CO2 to CO and CH4 using water molecules as electron donors under visible light irradiation, and the optimized 30% MnWO4/LaTiO2N composite displays significantly enhanced CO and CH4 yields of 3.94 and 0.81 μmol g-1 h-1, respectively, and the corresponding utilized photoelectron number reaches 14.7 μmol g-1 h-1, which is approximately 7.7 and 12.9 times that of LaTiO2N and MnWO4. The enhancement in photocatalytic activity of the composites can be ascribed to the construction of an S-scheme heterojunction, which exhibits improved charge transfer dynamics, retains the strongest redox capacity, and effectively suppresses back reactions. In situ Fourier-transform infrared imaging provides evidence, to a certain extent, for the existence of a temporal gradient order in the generation of multiple products during the photocatalytic reduction of CO2. © 2024 American Chemical Society.

Keyword :

LaTiO2N LaTiO2N MnWO4 MnWO4 photocatalytic CO2 conversion photocatalytic CO2 conversion S-scheme heterojunction S-scheme heterojunction visible light visible light

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Qi, J. , Zhang, Z. , Zhang, L. et al. Anchoring MnWO4 Nanorods on LaTiO2N Nanoplates for Boosted Visible Light-Driven Overall CO2 Reduction [J]. | ACS Applied Materials and Interfaces , 2024 , 16 (36) : 47741-47750 .
MLA Qi, J. et al. "Anchoring MnWO4 Nanorods on LaTiO2N Nanoplates for Boosted Visible Light-Driven Overall CO2 Reduction" . | ACS Applied Materials and Interfaces 16 . 36 (2024) : 47741-47750 .
APA Qi, J. , Zhang, Z. , Zhang, L. , Fu, X. , Ji, T. , Su, W. . Anchoring MnWO4 Nanorods on LaTiO2N Nanoplates for Boosted Visible Light-Driven Overall CO2 Reduction . | ACS Applied Materials and Interfaces , 2024 , 16 (36) , 47741-47750 .
Export to NoteExpress RIS BibTex

Version :

Hydrophobic TaOx Species Overlayer Tuning Light-Driven Methane Chlorination with Inorganic Chlorine SCIE
期刊论文 | 2024 , 20 (38) | SMALL
Abstract&Keyword Cite Version(2)

Abstract :

Halogenated methane serves as a universal platform molecule for building high-value chemicals. Utilizing sodium chloride solution for photocatalytic methane chlorination presents an environmentally friendly method for methane conversion. However, competing reactions in gas-solid-liquid systems leads to low efficiency and selectivity in photocatalytic methane chlorination. Here, an in situ method is employed to fabricate a hydrophobic layer of TaOx species on the surface of NaTaO3. Through in-situ XPS and XANES spectra analysis, it is determined that TaOx is a coordination unsaturated species. The TaOx species transforms the surface properties from the inherent hydrophilicity of NaTaO3 to the hydrophobicity of TaOx/NaTaO3, which enhances the accessibility of CH4 for adsorption and activation, and thus promotes the methane chlorination reaction within the gas-liquid-solid three-phase system. The optimized TaOx/NaTaO3 photocatalyst has a good durability for multiple cycles of methane chlorination reactions, yielding CH3Cl at a rate of 233 mu mol g(-1) h(-1) with a selectivity of 83%. In contrast, pure NaTaO3 exhibits almost no activity toward CH3Cl formation, instead catalyzing the over-oxidation of CH4 into CO2. Notably, the activity of the optimized TaOx/NaTaO3 photocatalyst surpasses that of reported noble metal photocatalysts. This research offers an effective strategy for enhancing the selectivity of photocatalytic methane chlorination using inorganic chlorine ions.

Keyword :

hydrophobicity hydrophobicity methane chlorination methane chlorination photocatalysis photocatalysis TaOx TaOx ultrathin layer ultrathin layer

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Dongmiao , Lin, Min , Zhang, Jiangjie et al. Hydrophobic TaOx Species Overlayer Tuning Light-Driven Methane Chlorination with Inorganic Chlorine [J]. | SMALL , 2024 , 20 (38) .
MLA Li, Dongmiao et al. "Hydrophobic TaOx Species Overlayer Tuning Light-Driven Methane Chlorination with Inorganic Chlorine" . | SMALL 20 . 38 (2024) .
APA Li, Dongmiao , Lin, Min , Zhang, Jiangjie , Qiu, Chengwei , Chen, Hui , Xiao, Zhen et al. Hydrophobic TaOx Species Overlayer Tuning Light-Driven Methane Chlorination with Inorganic Chlorine . | SMALL , 2024 , 20 (38) .
Export to NoteExpress RIS BibTex

Version :

Hydrophobic TaOx Species Overlayer Tuning Light-Driven Methane Chlorination with Inorganic Chlorine Scopus
期刊论文 | 2024 , 20 (38) | Small
Enhanced photocatalytic hydrogen production from formic acid with reversible electron transfers in PdO/TiO2 SCIE
期刊论文 | 2024 , 362 | FUEL
WoS CC Cited Count: 12
Abstract&Keyword Cite Version(2)

Abstract :

A prepared p -type PdO/n-type TiO2 junction was prepared as the catalyst for photocatalytic hydrogen evolution from formic acid (FA). It was found that PdO/TiO2 exhibited 1298 -fold higher activity than TiO2 under ultraviolet and visible light irradiation at room temperature. Multiple characterization techniques were utilized to demonstrate that doping PdO into TiO2 can regulate the Fermi level of the sample and the adsorption behavior of FA, resulting in different electron transfer behavior between FA and PdO/TiO2 compared to that between FA and TiO2. Oxygen vacancies acted as electron donors to deliver photogenerated electrons from TiO2 to the adsorbed bidentate FA, which increased the electron density on the O atom of FA and led to the formation of activated monodentate FA. This activated FA was more easily oxidized by the holes in PdO generated by visible light, leading to the production of H2 and CO2. The mode of adsorption associated with the Pd2+ site is the key factor in driving this reaction and leading to the reversible electron transfer phenomenon. This study provides a new promising route for the design of photocatalysts for self -decomposition reactions.

Keyword :

Adsorption behavior Adsorption behavior After photocatalysis After photocatalysis Electron transfer Electron transfer Hydrogen production Hydrogen production PdO/TiO2 PdO/TiO2 Photocatalysis formic acid Photocatalysis formic acid

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wang, Hong , Wang, Zhongming , Zhang, Zizhong et al. Enhanced photocatalytic hydrogen production from formic acid with reversible electron transfers in PdO/TiO2 [J]. | FUEL , 2024 , 362 .
MLA Wang, Hong et al. "Enhanced photocatalytic hydrogen production from formic acid with reversible electron transfers in PdO/TiO2" . | FUEL 362 (2024) .
APA Wang, Hong , Wang, Zhongming , Zhang, Zizhong , Fan, Yaming , Fu, Xianzhi , Dai, Wenxin . Enhanced photocatalytic hydrogen production from formic acid with reversible electron transfers in PdO/TiO2 . | FUEL , 2024 , 362 .
Export to NoteExpress RIS BibTex

Version :

Enhanced photocatalytic hydrogen production from formic acid with reversible electron transfers in PdO/TiO2 Scopus
期刊论文 | 2024 , 362 | Fuel
Enhanced photocatalytic hydrogen production from formic acid with reversible electron transfers in PdO/TiO2 EI
期刊论文 | 2024 , 362 | Fuel
Chemically bonded CdS/Bi2MoO6 Z-scheme heterojunction synergises with strong internal electric field for photocatalytic CO2 reduction Scopus
期刊论文 | 2024 , 674 , 158-167 | Journal of Colloid and Interface Science
SCOPUS Cited Count: 6
Abstract&Keyword Cite

Abstract :

Constructing strong interfacial electric fields to enhance the surface charge transport kinetics is an effective strategy for promoting CO2 conversion. Herein, we present the fabrication of CdS-Bi2MoO6 Z-scheme heterojunctions with a robust internal electric field (IEF) using an in situ growth technique, establishing chemical bonding between the components. The IEF at the interface can offer an impetus for the segregation and transportation of photogenerated carriers, while the Cd-O chemical bonding mode acts as a rapid conduit for these carriers, thereby reducing the charge transfer distance. As a result, the Z-scheme charge transfer is accelerated due to the synergistic influence of these two factors. Therefore, the optimized CdS/Bi2MoO6 Z-scheme heterojunction possesses significantly enhanced dynamic carrier mobility, thus promoting the conversion of CO2 to CO without the need for additional co-catalysts or sacrificial agents. This optimization yields a remarkable CO selectivity of up to 97%. Meanwhile, the expedited Z-scheme charge transfer mechanism is validated through X-ray photoelectron spectroscopy, Kelvin probe force microscopy, and in situ diffuse reflectance infrared Fourier transform spectroscopy. © 2024 Elsevier Inc.

Keyword :

Chemical bond Chemical bond CO2 reduction CO2 reduction Internal electric field Internal electric field Photocatalysis Photocatalysis Z-scheme Z-scheme

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wu, Y. , Xiao, J. , Yuan, J. et al. Chemically bonded CdS/Bi2MoO6 Z-scheme heterojunction synergises with strong internal electric field for photocatalytic CO2 reduction [J]. | Journal of Colloid and Interface Science , 2024 , 674 : 158-167 .
MLA Wu, Y. et al. "Chemically bonded CdS/Bi2MoO6 Z-scheme heterojunction synergises with strong internal electric field for photocatalytic CO2 reduction" . | Journal of Colloid and Interface Science 674 (2024) : 158-167 .
APA Wu, Y. , Xiao, J. , Yuan, J. , Wang, L. , Luo, S. , Zhang, Z. et al. Chemically bonded CdS/Bi2MoO6 Z-scheme heterojunction synergises with strong internal electric field for photocatalytic CO2 reduction . | Journal of Colloid and Interface Science , 2024 , 674 , 158-167 .
Export to NoteExpress RIS BibTex

Version :

Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane Scopus
期刊论文 | 2024 , 146 (34) , 24150-24157 | Journal of the American Chemical Society
SCOPUS Cited Count: 11
Abstract&Keyword Cite

Abstract :

This work introduces a new strategy of a single-atom nest catalyst, whereby several single atoms are positioned closely, aiming to achieve the dual benefits of high atom-utilization efficiency while avoiding the steric hindrance in the coupling reaction. As a proof of concept, Pt single-atom nests, where the adjacent Pt single atoms are approximately 4 Å apart, are precisely engineered on the TiO2 photocatalyst for photocatalytic non-oxidative coupling of methane. The Pt single-atom nest photocatalyst demonstrates remarkable activity, achieving a C2H6 yield and turnover frequency of 251.6 μmol gcat-1 h-1 and 20 h-1, respectively, representing a 3.2-fold improvement compared to the Pt single-atom photocatalyst. Density functional theory calculations reveal that the Pt single-atom nest can significantly decrease the energy barrier for the activation of both CH4 molecules in the coupling process. © 2024 American Chemical Society.

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, P. , Li, J. , Huang, H. et al. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane [J]. | Journal of the American Chemical Society , 2024 , 146 (34) : 24150-24157 .
MLA Zhang, P. et al. "Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane" . | Journal of the American Chemical Society 146 . 34 (2024) : 24150-24157 .
APA Zhang, P. , Li, J. , Huang, H. , Sui, X. , Zeng, H. , Lu, H. et al. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane . | Journal of the American Chemical Society , 2024 , 146 (34) , 24150-24157 .
Export to NoteExpress RIS BibTex

Version :

TiO2-based Pd/Fe bimetallic modification for the efficient photothermal catalytic degradation of toluene: The synergistic effect of •O2- and •OH species SCIE
期刊论文 | 2024 , 336 | SEPARATION AND PURIFICATION TECHNOLOGY
WoS CC Cited Count: 12
Abstract&Keyword Cite Version(2)

Abstract :

The construction of photothermal catalysts to provide advanced oxidation ability and stability is a great challenge for eliminating volatile organic compounds (VOCs) during the photothermal catalytic process. Herein, a bimetallic modification method was proposed to synthesize Pd/Fe-TiO2. Under ultraviolet-visible (UV-Vis) light irradiation with the intensity of 610 mW/cm(2), the optimal 0.7 wt% Pd/0.4 wt% Fe-TiO2 catalyst of which surface was detected at the temperature of 165 C can achieve a toluene conversion of 94 % and a CO2 yield of 87 %, respectively. Based on the results of in-situ DRIFTS, quasi-situ EPR, XPS, and O-2-TPD tests, it was found that two distinct types of Pd and Fe active sites not only generated reactive oxygen species (ROS) but also adsorbed toluene and intermediate species, which promoted the degradation of toluene. It is proposed that there be an electron transfer behavior between Fe and Pd nanoparticles, resulting in a synergistic interaction of the two metals. This study shows that creating bimetallic modification catalysts is an efficient method for eliminating VOCs through photothermal catalysis.

Keyword :

Bimetallic modification Bimetallic modification Oxidative degradation Oxidative degradation Photothermal catalysis Photothermal catalysis ROS ROS Toluene Toluene

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Fan, Shipeng , Luo, Songyu , Wang, Yun et al. TiO2-based Pd/Fe bimetallic modification for the efficient photothermal catalytic degradation of toluene: The synergistic effect of •O2- and •OH species [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2024 , 336 .
MLA Fan, Shipeng et al. "TiO2-based Pd/Fe bimetallic modification for the efficient photothermal catalytic degradation of toluene: The synergistic effect of •O2- and •OH species" . | SEPARATION AND PURIFICATION TECHNOLOGY 336 (2024) .
APA Fan, Shipeng , Luo, Songyu , Wang, Yun , Yue, Xuanyu , Zheng, Duojia , Zhang, Zizhong et al. TiO2-based Pd/Fe bimetallic modification for the efficient photothermal catalytic degradation of toluene: The synergistic effect of •O2- and •OH species . | SEPARATION AND PURIFICATION TECHNOLOGY , 2024 , 336 .
Export to NoteExpress RIS BibTex

Version :

TiO2-based Pd/Fe bimetallic modification for the efficient photothermal catalytic degradation of toluene: The synergistic effect of ∙O2– and ∙OH species Scopus
期刊论文 | 2024 , 336 | Separation and Purification Technology
TiO2-based Pd/Fe bimetallic modification for the efficient photothermal catalytic degradation of toluene: The synergistic effect of ∙O2– and ∙OH species EI
期刊论文 | 2024 , 336 | Separation and Purification Technology
10| 20| 50 per page
< Page ,Total 81 >

Export

Results:

Selected

to

Format:
Online/Total:241/9697627
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1