• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

傅明建 (傅明建.) [1] (Scholars:傅明建) | 郭福强 (郭福强.) [2]

Indexed by:

PKU CSCD

Abstract:

无信号灯左转路口是自动驾驶场景中最为危险的场景之一,如何实现高效安全的左转决策是自动驾驶领域的重大难题。深度强化学习(DRL)算法在自动驾驶决策领域具有广阔应用前景。但是,深度强化学习在自动驾驶场景中存在样本效率低、奖励函数设计困难等问题。提出一种基于专家先验的深度强化学习算法(CBAMBC SAC)来解决上述问题。首先,利用SMARTS仿真平台获得专家先验知识;然后,使用通道-空间注意力机制(CBAM)改进行为克隆(BC)方法,在专家先验知识的基础上预训练模仿专家策略;最后,使用模仿专家策略指导深度强化学习算法的学习过程,并在无信号灯路口左转决策中进行验证。实验结果表明,基于专家先验的DRL算法比传统的DRL算法更具优势,不仅可以免去人为设置奖励函数的工作量,而且可以显著提高样本效率从而获得更优性能。在无信号灯路口左转场景下,CBAM-BC SAC算法与传统DRL算法(SAC)、基于传统行为克隆的DRL算法(BC SAC)相比,平均通行成功率分别提高了14.2和2.2个百分点。

Keyword:

模仿学习 深度强化学习 自动驾驶 行为克隆 驾驶决策

Community:

  • [ 1 ] 福州大学计算机与大数据学院

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

计算机工程

ISSN: 1000-3428

CN: 31-1289/TP

Year: 2024

Issue: 05

Volume: 50

Page: 91-99

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 13

Online/Total:141/10009997
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1