• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

孙昌儿 (孙昌儿.) [1] | 刘秉瀚 (刘秉瀚.) [2]

Abstract:

SVM在小训练样本,高维情况下,具有很好的泛化性能。但它不适用于多类分类。本文分析基本的SVM和多类SVM分类器,重点讨论了SVM决策树,提出了一种结点分类器类集合划分方案来构造SVM决策树。实验结果表明,这种方法构造的SVM决策树分类器分类性能较好。

Keyword:

SVM决策树 支持向量机 类集合划分

Community:

  • [ 1 ] 福州大学数学与计算机科学学院

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Year: 2006

Language: Chinese

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:99/10065850
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1