Indexed by:
Abstract:
配电网中高阻接地故障(High ImpedanceFault, HIF)时常发生,其故障特征微弱而难以检测,严重情况下可能导致火灾或人身事故。提出了一种基于相空间重构和迁移学习的故障识别方法,实现对谐振接地系统中HIF的辨识。首先,使用基于综合策略的小波阈值降噪方法对零序电流信号进行处理,以降低噪声的影响。随后,对降噪后的仿真信号及实测信号进行相空间重构,获取重构轨迹图,以此作为故障识别的特征量。最后,在辨识模型构建上,先使用仿真信号的重构轨迹图训练GoogLeNet模型,再使用实测信号对模型进行微调,实现迁移学习。所提算法的优点是使用相空间重构进行了信号转换,故障信号与干扰信号的重构轨迹图差异明显,且实测信号与仿真信号的重构轨迹图相似度较高。在进行迁移学习后,实现了对实测小样本数据较为准确的检测。实验结果表明,无论是故障实测数据还是故障仿真数据,识别准确率均达到95%以上。此外,在强噪声干扰、采样数据点缺失及故障回路间歇性导通情况下,所提算法也取得了较好的结果。
Keyword:
Reprint 's Address:
Email:
Source :
电力系统保护与控制
Year: 2022
Issue: 13
Volume: 50
Page: 151-162
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: