• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhang, Qiongdan (Zhang, Qiongdan.) [1] | Zhao, Xinhua (Zhao, Xinhua.) [2] | Zheng, Yong (Zheng, Yong.) [3] (Scholars:郑勇) | Xiao, Yihong (Xiao, Yihong.) [4] (Scholars:肖益鸿) | Li, Jinhui (Li, Jinhui.) [5] | Liu, Fujian (Liu, Fujian.) [6] (Scholars:刘福建) | Jiang, Lilong (Jiang, Lilong.) [7] (Scholars:江莉龙)

Indexed by:

EI Scopus SCIE

Abstract:

The selective removal of sulfur dioxide (SO2) is of importance for the desulfurization and purification of exhaust gases, but it is still challenging to design adsorbents with high capture capacities (particularly at low partial pressures) and great cyclic stability. Herein, a facile strategy is proposed to optimize the adsorption performance of NaY zeolites, where various alcohol-terminated compounds (n-pentanol, ethylene glycol, polyethylene glycol) with different molecular structures are introduced as auxiliaries to facilitate the zeolite nucleation process and the formation of microporous structures. These alcohols promote the crystallization of NaY, increase the specific surface area and expand the microporosity due to the formation of micelles during synthesis. Coupled with the rise of surface basic sites, the chemisorption and physisorption of SO2 on designed zeolites is considerably improved. The PEG-Y sample derived from polyethylene glycol gives the highest dynamic adsorption of SO2 (315 mg/g), high-level SO2 equilibrium adsorption (2.18 mmol/g) under exceptionally low pressure (0.002 bar), preferred separation performance of SO2 from SO2/N2, robust stability and great regenerability. This technique can be further employed to fabricate analogous adsorbents for other gas adsorption and separation processes.

Keyword:

Adsorption Alcohol -terminated compounds Deep desulfurization NaY zeolite SO 2 capture

Community:

  • [ 1 ] [Zhang, Qiongdan]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
  • [ 2 ] [Zhao, Xinhua]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
  • [ 3 ] [Zheng, Yong]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
  • [ 4 ] [Xiao, Yihong]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
  • [ 5 ] [Liu, Fujian]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
  • [ 6 ] [Jiang, Lilong]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
  • [ 7 ] [Li, Jinhui]Sinopec Guangyuan Nat Gas Purificat Co LTD, Guangyuan 628000, Sichuan, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

Year: 2023

Volume: 475

1 3 . 4

JCR@2023

1 3 . 4 0 0

JCR@2023

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:84/9987005
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1