Indexed by:
Abstract:
Light-driven valorization conversion of CO2 is an encouraging carbon-negative pathway that shifts energy-reliance from fossil fuels to renewables. Herein, a hierarchical urchin-like hollow-TiO2@CdS/ZnS (HTO@CdS/ZnS) Z-scheme hybrid synthesized by an in situ self-assembly strategy presents superior photocatalytic CO2-to-CO activity with nearly 100% selectivity. Specifically, benefitting from the reasonable architectural and interface design, as well as surface modification, this benchmarked visible-light-driven photocatalyst achieves a CO output of 62.2 mu mol center dot h-1 and a record apparent quantum yield of 6.54% with the Co(bpy)32+ (bpy = 2,2 '-bipyridine) cocatalyst. It rivals all the incumbent selective photocatalytic conversion of CO2 to CO in the CH3CN/H2O/TEOA reaction systems. Specifically, the addition of HTO and stabilized ZnS enables the photocatalyst to effectively upgrade optical and electrical performances, contributing to efficient light-harvesting and photogenerated carrier separation, as well as interfacial charge transfer. The tremendous enhancement of photocatalytic performance reveals the superiority of the Z-scheme heterojunction assembled from HTO and CdS/ZnS, featuring the inner electric field derived from the band bending of HTO@CdS/ ZnS make CdS resistant to photocorrosion. This study allows access to inspire studies on rationally modeling and constructing diverse heterostructures for the storage and conversion of renewables and chemicals.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2023
Issue: 20
Volume: 15
Page: 24494-24503
8 . 5
JCR@2023
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: