Indexed by:
Abstract:
With BEA (Si/Al = 20) zeolite and dealuminated Si-BEA as supports, the non-noble metal Co catalysts are prepared by vacuum impregnation method to study the correlation between the catalyst structure and catalytic performance in propane dehydrogenation (PDH) reaction . The optimal 0.5 wt% Co@Si-BEA catalyst exhibits over 93 % selectivity to propylene, high single-pass yield and great regeneration stability in the recycling PDH reactions at 590 degrees C. The isolated Co2+ cations are anchored in the micropores of Si-BEA zeolites through interacting with the silanol groups generated by dealumination treatment, and serve as the catalytically active sites to selectively activate the C-H bonds of propane rather than dissociate the C-C bonds. Furthermore, Co@Si-BEA catalyst adsorbs propylene in a favorable configuration, leading to desired adsorption features with respect to less amount and weaker strength in comparison with that on non-dealuminated Co@BEA catalyst. Therefore, the facile propylene desorption can be achieved on Co@Si-BEA catalyst, which is responsible for its high propylene selectivity, activity, and long-term stability in PDH reaction. By contrast, Co@BEA catalyst with higher density of surface Bronsted acid sites, facing with severe issues of propane C-C bond scission, strong propylene adsorption and coke deposition-caused deactivation.
Keyword:
Reprint 's Address:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2023
Volume: 455
1 3 . 4
JCR@2023
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: