Home>Results
Advanced Search
Indexed by:
Abstract:
The generation of cyclic carbonates by the cycloaddition of CO2 with epoxides is attractive in the industry, by which CO2 is efficiently used as C1 source. Herein, a series of catalysts were developed to efficient mediate the cycloaddition of CO2 with epoxides to generate carbonates. The catalysts were easily synthesized via the amine-formaldehyde condensation of ethidium bromide with a variety of linkers. The newly prepared heterogeneous catalysts have high thermal stability and degradation temperatures. The surface of the catalysts is smooth and spherical in shape. The effect of temperature, pressure, reaction time and catalyst dosage on the cycloaddition of CO2 with epoxide were investigated. The results show that the catalyst with 1,3,5-tris(4-formylphenyl)benzene as the linker can achieve 97.4 % conversion efficiency at the conditions of 100 degrees C, reaction time of 12 h, and the reaction pressure of 1.2 MPa in a solvent-free environment. Notably, the polymers serve as homogeneous catalysts during the reaction (reaction temperature above T-g) and can be separated and recovered easily as homogeneous catalysts at room temperature. In addition, the catalyst is not only suitable for a wide range of epoxide substrates, but also can be recycled many times. Furthermore, DFT calculations show that the coordination between the electrophilic center of the catalyst and the epoxide reduces the energy barrier, and the reaction mechanism is proposed based on the reaction kinetic studies and DFT calculations.
Keyword:
Reprint 's Address:
Version:
Source :
CHEMPLUSCHEM
ISSN: 2192-6506
Year: 2022
Issue: 11
Volume: 87
3 . 4
JCR@2022
3 . 0 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:2
CAS Journal Grade:4
Affiliated Colleges: