Indexed by:
Abstract:
Hydroxylation of benzene to phenol over a photocatalyst is a green approach toward phenol production. ZnFe2O4 (ZFO) with an intrinsic peroxidase-like catalytic behavior toward H2O2 activation is an emerging photocatalyst for benzene hydroxylation reaction; however, its catalytic performance is greatly limited by the fast charge recombination, inevitable metal leaching and hydrophilic surface structure. Herein, the encapsulation of ZFO by carbons (ZFO@C) is an effective solution to address these issues. The carbons conformably coating on ZFO not only protect them from corrosion and metal leaching, but also enable the generation of a strong electronic contact between them to facilitate charge separation. In addition, the carbons also increase the surface affinity for benzene adsorption. As a result, ZFO@C exhibited a significant enhanced photocatalytic activity and durability for phenol synthesis. Furthermore, ZFO@C with carbon derived unique functionalities will have a broad application in photocatalytic green synthesis of fine chemicals.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2022
Volume: 304
2 2 . 1
JCR@2022
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 51
SCOPUS Cited Count: 52
ESI Highly Cited Papers on the List: 1 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: