Query:
学者姓名:侯乙东
Refining:
Year
Type
Indexed by
Source
Complex
Former Name
Co-
Language
Clean All
Abstract :
Designing porous structures has proven to be an effective strategy for enhancing the photocatalytic NO oxidation activity of carbon nitride (CN). Despite significant advances in the fabrication of porous CN, a cost-effective and high-yield synthesis method for porous CN is still highly desirable. In this study, we presented a facile strategy to synthesize porous carbon nitride by V2O5-assisted thermal oxidation process. Namely, after grinding bulk CN with a small amount of NH4VO3, the mixture was subjected to thermal treatment, resulting in porous carbon nitride with a yield of 50 %. The resulting porous structure, which features an enlarged surface area and enhanced charge separation efficiency, significantly improved the photocatalytic performance for NO removal-approximately four times higher than bulk CN. Additionally, the NO removal mechanism was investigated through in-situ Fourier transform infrared spectroscopy to observe reaction intermediates and electron paramagnetic resonance trapping experiments to identify active species, providing insight into the conversion pathway. The catalytic thermal oxidation etching process effectively tuned the microstructure of g-C3N4, offering a low-cost, easy-to-implement, and time-efficient method for synthesizing porous CN, thereby providing a promising approach for developing advanced photocatalysts.
Keyword :
NO oxidation NO oxidation O 2 activation O 2 activation Photocatalysis Photocatalysis Porous carbon nitride Porous carbon nitride
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Fang, Zixun , Zhou, Yao , Yang, Zhou et al. V2O5-assisted thermal oxidation strategy for synthesizing porous carbon nitride with enhanced photocatalytic NO removal performance [J]. | SURFACES AND INTERFACES , 2025 , 60 . |
MLA | Fang, Zixun et al. "V2O5-assisted thermal oxidation strategy for synthesizing porous carbon nitride with enhanced photocatalytic NO removal performance" . | SURFACES AND INTERFACES 60 (2025) . |
APA | Fang, Zixun , Zhou, Yao , Yang, Zhou , Yang, Can , Zhang, Jinshui , Hou, Yidong . V2O5-assisted thermal oxidation strategy for synthesizing porous carbon nitride with enhanced photocatalytic NO removal performance . | SURFACES AND INTERFACES , 2025 , 60 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Photocatalysts with abundant oxygen vacancies (OVs) exhibit enhanced activity for the direct oxidation of benzene to phenol with O2, owing to their superior O2 activation and charge separation properties. However, OVs on metal oxide surfaces such as WO3 are susceptible to healing by oxygen-containing reactants or intermediates, leading to their irreversible deactivation. Herein, we demonstrate that incorporating Mo into the WO3 lattice effectively lowers the energy barrier for OV formation, promoting the dynamic formation of more abundant photoinduced OVs in situ on the surface during the photocatalytic reaction. These Mo-promoted photoinduced OVs are found to ensure the long-term sustainability of sufficient OVs under working conditions, enhancing photocatalytic performance and particularly its durability in the aerobic oxidation of benzene to phenol. These findings provide a straightforward strategy to overcome the issue of OV healing, enabling the sustainable operation of OV-rich photocatalysts for a range of emerging applications, even in O2-involved redox reactions.
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yu, Zhenzhen , Yu, Dexi , Wang, Xiaoyi et al. Photoinduced Formation of Oxygen Vacancies on Mo-Incorporated WO3 for Direct Oxidation of Benzene to Phenol by Air [J]. | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY , 2025 , 147 (16) : 13885-13892 . |
MLA | Yu, Zhenzhen et al. "Photoinduced Formation of Oxygen Vacancies on Mo-Incorporated WO3 for Direct Oxidation of Benzene to Phenol by Air" . | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 147 . 16 (2025) : 13885-13892 . |
APA | Yu, Zhenzhen , Yu, Dexi , Wang, Xiaoyi , Huang, Meirong , Hou, Yidong , Lin, Wei et al. Photoinduced Formation of Oxygen Vacancies on Mo-Incorporated WO3 for Direct Oxidation of Benzene to Phenol by Air . | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY , 2025 , 147 (16) , 13885-13892 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The integration of photoelectrochemical (PEC) technology with persulfate-based advanced oxidation processes has emerged as a promising approach for efficient pollutant removal in environmental remediation. Herein, we developed a novel PEC system combining a Co3O4/BiVO4 (CO/BVO) photoanode with a CoFe2O4/carbon paper (CFO/CP) cathode for activating peroxymonosulfate (PMS) toward bisphenol A (BPA) removal. The enhanced photogenerated charge separation in CO/BVO and the PMS activation by CFO/CP in the PEC system enabled complete BPA degradation within 60 minutes under optimized conditions (1.0 V bias, 1.0 mM PMS). The influence of PMS concentration, applied bias, pH, and coexisting anions on BPA degradation was thoroughly investigated. Radical scavenging experiments combined with electron paramagnetic resonance analysis identified center dot SO4-, center dot OH, and photogenerated holes as dominant reactive species. The system also exhibited good stability over five consecutive cycles, with minimal metal ion leaching. This work demonstrates the potential of an efficient PEC system integrated with sulfate radical-based AOPs, offering an innovative approach for organic pollutant remediation in wastewater treatment.
Keyword :
Organic removal Organic removal Peroxymonosulfate Peroxymonosulfate Photoelectrocatalytic Photoelectrocatalytic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Geng, Xuanran , Zhang, Renfu , Zhang, Peiyun et al. Photoelectrochemical cell with Co3O4/BiVO4 photoanode and CoFe2O4 cathode: An efficient persulfate activation system for organic pollutants degradation [J]. | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING , 2025 , 13 (2) . |
MLA | Geng, Xuanran et al. "Photoelectrochemical cell with Co3O4/BiVO4 photoanode and CoFe2O4 cathode: An efficient persulfate activation system for organic pollutants degradation" . | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 13 . 2 (2025) . |
APA | Geng, Xuanran , Zhang, Renfu , Zhang, Peiyun , Yuan, Xiaoying , Yang, Can , Hou, Yidong et al. Photoelectrochemical cell with Co3O4/BiVO4 photoanode and CoFe2O4 cathode: An efficient persulfate activation system for organic pollutants degradation . | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING , 2025 , 13 (2) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The development of durable and highly efficient visible-light-driven photocatalysts is essential for the photo- catalytic ozonation process towards degrading organic pollutants. This study presents CN-MA, a novel photo- catalyst synthesized by grafting carbon nitride (CN) with single-atom Mn and 2-hydroxy-4,6-dimethylpyrimidine (HDMP) via one-step thermal polymerization. Experimental characterization and theoretical calculation results reveal that incorporating single-atom Mn and HDMP into CN alters the charge density distribution on the heptazine rings. This modification enhances the absorption of visible light and reduces exciton binding energy, leading to improved separation and migration of photogenerated charge carriers. Moreover, the single-atom Mn provides abundant active sites for O3 adsorption and activation, which increases the utilization of photo- generated electrons to produce highly reactive oxidative species. Consequently, CN-MA exhibits superior photocatalytic ozonation activity, achieving 94% mineralization of phenol within 60 min and maintaining excellent stability over multiple cycles. The research also proposes a plausible reaction mechanism based on free-radical trapping experiments and steady-state concentration experiments using molecular probes. This strategy advances the development of molecular-engineered catalysts co-modified with single metal atoms, thereby enhancing the photocatalytic ozonation process for the degradation of organic pollutants.
Keyword :
Carbon nitride Carbon nitride Molecular engineering Molecular engineering Photocatalytic ozonation Photocatalytic ozonation Single-atom Single-atom
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Lai, Zhiming , Yang, Yang , Yang, Zhou et al. Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-di-methylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants [J]. | JOURNAL OF COLLOID AND INTERFACE SCIENCE , 2025 , 683 : 1106-1118 . |
MLA | Lai, Zhiming et al. "Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-di-methylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants" . | JOURNAL OF COLLOID AND INTERFACE SCIENCE 683 (2025) : 1106-1118 . |
APA | Lai, Zhiming , Yang, Yang , Yang, Zhou , Ruan, Wenqi , Yang, Can , Chen, Qiang et al. Carbon nitride grafted with single-atom manganese and 2-hydroxy-4,6-di-methylpyrimidine: A visible-light-driven photocatalyst for enhanced ozonation of organic pollutants . | JOURNAL OF COLLOID AND INTERFACE SCIENCE , 2025 , 683 , 1106-1118 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The low efficiency of photogenerated charge separation significantly hinders the photocatalytic nitrogen (N2) fixation. Local polarization electric field (LPEF) induced by defects has been known to enhance charge separation, yet the synergistic effects and mechanisms related to different types of defects in pure phases remain poorly understood. In this study, defect-free bismuth oxybromide (BiOBr; BOB), together with single vacancy (BOB-VBr and BOB-VO) and dual vacancy (BOB-VBrO) analogues, were successfully synthesized, and the presence of these specific vacancies was comprehensively characterized. Notably, the dual vacancy BOB-VBrO exhibited the highest photocatalytic NH3 generation rate of 266 mu mol g-1 h-1 in a liquid-solid biphasic system, which was 6.1, 1.5, and 1.4 times higher than those of BOB, BOB-VBr, and BOB-VO, respectively. Furthermore, the NH3 generation capacity of BOB-VBrO reached an impressive rate of 978 mu mol g-1 h-1 in a gas-liquid-solid triphasic system. Photoelectrochemical tests revealed that BOB-VBrO demonstrated the highest light conversion efficiency, followed by BOB-VO, BOB-VBr, and BOB. The relative intensity of the internal electric field in BOB-VBrO was also significantly high, being 1.8, 2.4, and 3.9 times greater than those of BOB-VO, BOB-VBr, and BOB, respectively. The Br and O vacancies synergistically induced LPEF between the [O]/[Br] and [Bi] layers. In situ irradiation X-ray photoelectron spectroscopy indicated that O and Br vacancies of the oligomers could synergistically enhance the LPEF, thereby facilitating the transfer of photogenerated electrons from O/Br to Bi. Additionally, the practical feasibility of BOB-VBrO in photocatalytic N2 fixation was validated to produce liquid nitrogenous fertilizer for plant growth, revealing its potential application in agricultural production.
Keyword :
BiOBr BiOBr local polarizationelectric field local polarizationelectric field photocatalytic nitrogen fixation photocatalytic nitrogen fixation synergy mechanism synergy mechanism vacancies vacancies
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Zhong, Zhou , Zhang, Heng-Jian , Yang, Ya-Ying et al. Oxygen and Bromine Vacancies Synergistically Induce Local Polarization Electric Field for Enhanced Photocatalytic Nitrogen Fixation on BiOBr [J]. | ACS CATALYSIS , 2025 , 15 (8) : 6334-6345 . |
MLA | Zhong, Zhou et al. "Oxygen and Bromine Vacancies Synergistically Induce Local Polarization Electric Field for Enhanced Photocatalytic Nitrogen Fixation on BiOBr" . | ACS CATALYSIS 15 . 8 (2025) : 6334-6345 . |
APA | Zhong, Zhou , Zhang, Heng-Jian , Yang, Ya-Ying , Zhang, Tian-Kuan , Qu, Xing-Hua , Ma, Li et al. Oxygen and Bromine Vacancies Synergistically Induce Local Polarization Electric Field for Enhanced Photocatalytic Nitrogen Fixation on BiOBr . | ACS CATALYSIS , 2025 , 15 (8) , 6334-6345 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Among the current industrial hydrogen production technologies, electrolysis has attracted widespread attention due to its zero carbon emissions and sustainability. However, the existence of overpotential caused by reaction activation, mass/charge transfer, etc. makes the actual water splitting voltage higher than the theoretical value, severely limiting the industrial application of this technology. Therefore, it is particularly important to design and develop highly efficient electrocatalysts to reduce overpotential and improve energy efficiency. Among the various synthesis methods of electrocatalysts, electrochemical synthesis stands out due to its simplicity, easy reaction control, and low cost. This review article classifies and summarizes the electrochemical synthesis techniques (including electrodeposition, electrophoretic deposition, electrospinning, anodic oxidation, electrochemical intercalation, and electrochemical reconstruction), followed by their application in the field of water electrolysis. In addition, some challenges currently faced by electrochemical synthesis in electrocatalytic hydrogen production, and their potential solutions are discussed to promote the practical application of electrochemical synthesis in water electrolysis.Graphical AbstractThis review summarizes and classifies commonly used electrochemical synthesis techniques, followed by the application of electrochemical synthesis methods in research on water electrolysis. Additionally, some challenges faced by electrochemical synthesis in the field of water electrolysis and possible solutions are discussed.
Keyword :
Electrocatalysts Electrocatalysts Electrochemical synthesis Electrochemical synthesis Green hydrogen Green hydrogen Water splitting Water splitting
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Yang , Xiao, Boxin , Liu, Kunlong et al. Electrochemical Synthesis of High-Efficiency Water Electrolysis Catalysts [J]. | ELECTROCHEMICAL ENERGY REVIEWS , 2025 , 8 (1) . |
MLA | Wu, Yang et al. "Electrochemical Synthesis of High-Efficiency Water Electrolysis Catalysts" . | ELECTROCHEMICAL ENERGY REVIEWS 8 . 1 (2025) . |
APA | Wu, Yang , Xiao, Boxin , Liu, Kunlong , Wang, Sibo , Hou, Yidong , Lu, Xue Feng et al. Electrochemical Synthesis of High-Efficiency Water Electrolysis Catalysts . | ELECTROCHEMICAL ENERGY REVIEWS , 2025 , 8 (1) . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Persulfate-based advanced oxidation technology, due to its high efficiency, controllability, and safety, shows great potential for the deep removal of organic pollution, yet its mineralization efficiency is hindered by the lack of synergy between radical and nonradical pathways. Herein, we present defective carbon nitride (DCN) as a highly efficient peroxymonosulfate (PMS) activation catalyst that couples nonradical aggregation with radical mineralization. The tailored electronic structure of the DCN framework enhances visible-light absorption, photogenerated charge separation, and electron transfer ability due to a built-in electric field. DCN effectively interacts with PMS to rapidly accumulate pollutants from the bulk solution onto the catalyst surface via an electron-transfer pathway. Simultaneously, the accumulated pollutants undergo in-situ decomposition by center dot SO4- radicals formed on the catalyst surface under visible light irradiation, achieving a remarkable 98 % mineralization ratio. The mixed-pathway process demonstrates excellent cyclic stability and environmental robustness. This study introduces a novel strategy to enhance the catalytic oxidation performance of metal-free catalysts by controlling persulfate activation pathways for water decontamination.
Keyword :
Carbon nitride Carbon nitride Peroxymonosulfate Peroxymonosulfate Photocatalysis Photocatalysis Pollutant mineralization Pollutant mineralization Synergistic Synergistic
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Ming, Hongbo , Ruan, Wenqi , Yuan, Xiaoying et al. Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization [J]. | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 . |
MLA | Ming, Hongbo et al. "Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization" . | SEPARATION AND PURIFICATION TECHNOLOGY 360 (2025) . |
APA | Ming, Hongbo , Ruan, Wenqi , Yuan, Xiaoying , Cheng, Jiajia , Yang, Can , Hou, Yidong et al. Defective carbon nitride-Mediated peroxymonosulfate activation: Synergistic radical and nonradical pathways for enhanced pollutant mineralization . | SEPARATION AND PURIFICATION TECHNOLOGY , 2025 , 360 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Photocatalytic ozonation emerges as an appealing approach for wastewater purification. However, the kinetic constraints associated with the charge separation and the ozone activation hinder the advancement of photocatalytic ozonation systems. Herein, we prepared CeO2 photocatalysts with predominantly exposed {1 1 0}, {1 0 0}, or {1 1 1} facets, highlighting the synergy role of crystal facet and oxygen vacancies in manipulating electron transfer and ozone activation. The CeO2-{1 1 0} catalyst exhibits the best efficiency for phenol mineralization (69%) in photocatalytic ozonation. Ex-situ, Quasi-situ, and In-situ characterization of the CeO2 catalysts reveal that facet engineering in the CeO2 catalysts optimizes the electronic properties of the catalysts, thereby enhancing the separation of photogenerated charge carriers and transfer of electrons and holes, which provides more electrons for O3 activation and promotes the formation of reactive oxygen species (ROS). Moreover, facet modulating leads to a change in the density of surface oxygen vacancies. The increased oxygen vacancy density on the CeO2-{1 1 0} surface accelerates the activation of O3 and the formation of adsorbed oxygen (*O), synergistically boosting the production rate of ROS. The present study offers valuable insights into the design of efficient photocatalysts for wastewater purification. © 2024 Elsevier Inc.
Keyword :
CeO2 CeO2 Crystal facet Crystal facet Oxygen vacancies Oxygen vacancies Photocatalytic ozonation Photocatalytic ozonation Synergistic effect Synergistic effect
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Yang, Z. , Xu, R. , Tao, H. et al. Crystal facet and oxygen vacancies synergistically mediate photocatalytic ozonation for organic pollutants removal over CeO2 [J]. | Journal of Catalysis , 2024 , 438 . |
MLA | Yang, Z. et al. "Crystal facet and oxygen vacancies synergistically mediate photocatalytic ozonation for organic pollutants removal over CeO2" . | Journal of Catalysis 438 (2024) . |
APA | Yang, Z. , Xu, R. , Tao, H. , Yang, Y. , Hou, Y. , Wang, K. et al. Crystal facet and oxygen vacancies synergistically mediate photocatalytic ozonation for organic pollutants removal over CeO2 . | Journal of Catalysis , 2024 , 438 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
The development of effective, low-cost, and stable photocatalysts for visible-light-driven hydrogen production is desired but challenging. Herein, in the presence of a ternary eutectic salt mixture, poly(heptazine imide) with a crystalline-amorphous interface, is synthesized, which endows improved transfer of charge carriers and enhanced photocatalytic activity for hydrogen production. © 2024 American Chemical Society.
Keyword :
charge separation charge separation hydrogen production hydrogen production photocatalysis photocatalysis poly(heptazine imide) poly(heptazine imide) water splitting water splitting
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wang, Q. , Li, S. , Zheng, D. et al. Prompt Charge Separation at Crystalline-Amorphous Interfaces of Poly(heptazine imides) for Photocatalytic Hydrogen Evolution [J]. | ACS Applied Energy Materials , 2024 , 7 (15) : 6090-6095 . |
MLA | Wang, Q. et al. "Prompt Charge Separation at Crystalline-Amorphous Interfaces of Poly(heptazine imides) for Photocatalytic Hydrogen Evolution" . | ACS Applied Energy Materials 7 . 15 (2024) : 6090-6095 . |
APA | Wang, Q. , Li, S. , Zheng, D. , Wang, S. , Hou, Y. , Zhang, G. . Prompt Charge Separation at Crystalline-Amorphous Interfaces of Poly(heptazine imides) for Photocatalytic Hydrogen Evolution . | ACS Applied Energy Materials , 2024 , 7 (15) , 6090-6095 . |
Export to | NoteExpress RIS BibTex |
Version :
Abstract :
Polymeric carbon nitride (PCN) photocatalysts have the potential to remove NO from ambient air. However, the catalytic performance of PCN is limited by the lack of sufficient active sites to effectively activate molecular oxygen. Herein, we report the construction of photocatalysts consisting of defective-activated-carbon and PCN via amide bond formation. This photocatalyst not only significantly enhances the chemisorption of O-2, but also accelerates the activation of molecular oxygen and oxidation of NO by creating a new electron transport pathway. This work provides a new strategy for polymer photocatalysts to promote molecular oxygen activation by constructing close-contact interfaces through amide bonding.
Keyword :
Amide bonding Amide bonding Molecular oxygen activation Molecular oxygen activation NO oxidation NO oxidation Photocatalysis Photocatalysis Polymeric carbon nitride Polymeric carbon nitride
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Fang, Zixun , Zhou, Min , Lin, Zheng et al. Amide bonded polymeric carbon nitride for photocatalytic O2 activation and NO oxidation [J]. | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY , 2024 , 353 . |
MLA | Fang, Zixun et al. "Amide bonded polymeric carbon nitride for photocatalytic O2 activation and NO oxidation" . | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY 353 (2024) . |
APA | Fang, Zixun , Zhou, Min , Lin, Zheng , Yang, Can , Hou, Yidong , Yu, Jimmy C. et al. Amide bonded polymeric carbon nitride for photocatalytic O2 activation and NO oxidation . | APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY , 2024 , 353 . |
Export to | NoteExpress RIS BibTex |
Version :
Export
Results: |
Selected to |
Format: |