Indexed by:
Abstract:
Colloidal nanocrystal scintillators hold great potential in fabricating large-area, flexible X-ray detectors for highresolution X-ray imaging of highly curved, irregularly shaped objects. The synthesis of high-efficiency, highstability nanoscintillators is of great importance for the development of X-ray imaging detectors. In this study, we develop a class of cerium (Ce3+)-sensitized core-shell nanoscintillators that are suitable for achieving flexible Xray luminescence imaging. We demonstrate that an epitaxial growth of NaGdF4:Ce(60%) on the surface of NaGdF4:Eu(15%) nanoscintillators as a sensitization layer allows for enhancing X-ray-induced radioluminescence. We reveal that the enhancement of X-ray luminescence in nanoscintillators could be attributed to the synergistic effect of high-Z composition-induced X-ray absorption, Ce3+ sensitization, and surface passivation to relieve energy quenching. By incorporating the nanoscintillators into a flexible elastomer of polydimethylsiloxane (PDMS), we demonstrate its utility in high-resolution flexible X-ray luminescence imaging.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF LUMINESCENCE
ISSN: 0022-2313
Year: 2022
Volume: 242
3 . 6
JCR@2022
3 . 3 0 0
JCR@2023
ESI Discipline: PHYSICS;
ESI HC Threshold:55
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: