• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Guo, Longkun (Guo, Longkun.) [1] (Scholars:郭龙坤) | Li, Peng (Li, Peng.) [2]

Indexed by:

CPCI-S EI Scopus SCIE

Abstract:

Let G be a directed graph with an integral cost on each edge. For a given positive integer k, the k-length negative cost cycle (kLNCC) problem is to determine whether G contains a negative cost cycle with at least k edges. Because of its applications in deadlock avoidance in synchronized streaming computing network, kLNCC was first studied in paper (Li et al. in Proceedings of the 22nd ACM symposium on parallelism in algorithms and architectures, pp 243-252, 2010), but remains open whether the problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{NP}}$$\end{document}-hard. In this paper, we first show that an even harder problem, the fixed-point k-length negative cost cycle trail (FPkLNCCT) problem that is to determine whether G contains a negative closed trail enrouting a given vertex (as the fixed point) and containing only cycles with at least k edges, isNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{NP}}$$\end{document}-complete in a multigraph even when k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} by reducing from the 3SAT problem. Then, we prove the NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{NP}}$$\end{document}-completeness of kLNCC by giving a more sophisticated reduction from the 3 occurrence 3-satisfiability (3O3SAT) problem which is known NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{NP}}$$\end{document}-complete. The complexity result for kLNCC is interesting since polynomial-time algorithms are known for both 2LNCC, which is actually equivalent to negative cycle detection, and the k-cycle problem, which is to determine whether G contains a cycle with of length at least k. Thus, this paper closes the open problem proposed by Li et al. (2010) whether kLNCC admits polynomial-time algorithms. Last but not the least, we present for 3LNCC a randomized algorithm that, if G contains a negative cycle of length at most L, can find a solution with a probability 1-epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\epsilon $$\end{document} for any epsilon is an element of(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \in (0,\,1]$$\end{document} within runtime O(2min{L,h}mnln1 epsilon)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2<^>{\min \{L,\,h\}}mn\left\lceil \ln \frac{1}{\epsilon }\right\rceil )$$\end{document}, where m, n and h are respectively the numbers of edges, vertices and length 2 negative cost cycles in G.

Keyword:

3 occurrence 3-satisfiability end{document}NP-Complete gif" href="10878_2018_371_Article_IEq9 math> mathcal{NP}}$$ math></mml <mml oddsidemargin}{-69pt} Randomized algorithm setlength{ usepackage{amsmath}

Community:

  • [ 1 ] [Guo, Longkun]Fuzhou Univ, Coll Math & Comp Sci, Fuzhou, Peoples R China
  • [ 2 ] [Li, Peng]Amazon Com Inc, Amazon Web Serv, Seattle, WA USA

Reprint 's Address:

  • 郭龙坤

    [Guo, Longkun]Fuzhou Univ, Coll Math & Comp Sci, Fuzhou, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF COMBINATORIAL OPTIMIZATION

ISSN: 1382-6905

Year: 2021

Issue: 3

Volume: 42

Page: 396-408

1 . 2 6 2

JCR@2021

0 . 9 0 0

JCR@2023

ESI Discipline: MATHEMATICS;

ESI HC Threshold:36

JCR Journal Grade:3

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:84/10285430
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1