• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Chen, Qinghua (Chen, Qinghua.) [1] (Scholars:陈清花) | Zhang, Liwang (Zhang, Liwang.) [2]

Indexed by:

Scopus SCIE

Abstract:

This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra H(C2(P))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}(C_2(\cal{P}))$$\end{document}, where C2(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2(\cal{P})$$\end{document} is the category of morphisms between projective objects in a finitary hereditary exact category A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal A$$\end{document}. When A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal A$$\end{document} is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{L}$$\end{document}, which is spanned by isoclasses of indecomposable objects in C2(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2(\cal{P})$$\end{document}. As applications, we demonstrate that L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{L}$$\end{document} contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal A$$\end{document} as a Lie subquotient algebra of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{L}$$\end{document}.

Keyword:

Hall algebra Heisenberg Lie algebra morphism category simple Lie algebra

Community:

  • [ 1 ] [Chen, Qinghua]Fuzhou Univ, Sch Math & Stat, Fuzhou, Fujian, Peoples R China
  • [ 2 ] [Zhang, Liwang]Fuzhou Univ, Sch Math & Stat, Fuzhou, Fujian, Peoples R China

Reprint 's Address:

  • 陈清花

    [Chen, Qinghua]Fuzhou Univ, Sch Math & Stat, Fuzhou, Fujian, Peoples R China

Show more details

Version:

Related Keywords:

Source :

CZECHOSLOVAK MATHEMATICAL JOURNAL

ISSN: 0011-4642

Year: 2024

Issue: 4

Volume: 74

Page: 1145-1164

0 . 4 0 0

JCR@2023

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:76/10285975
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1