Indexed by:
Abstract:
In this paper, we examine the volume comparison theorem associated with sigma k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k$$\end{document}-curvature. Specifically, we demonstrate that the volume comparison theorem with respect to sigma k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k$$\end{document}-curvature is valid for metrics closed to strictly stable, positive Einstein metrics. Utilizing analogous techniques, we derive a local rigidity theorem for strictly stable Ricci-flat manifolds with respect to sigma k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k$$\end{document}-curvature. This theorem establishes that there are no metrics with positive sigma k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _k$$\end{document}-curvature in the vicinity of strictly stable Ricci-flat metrics.
Keyword:
Reprint 's Address:
Version:
Source :
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN: 0944-2669
Year: 2025
Issue: 3
Volume: 64
2 . 1 0 0
JCR@2023
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: