Indexed by:
Abstract:
The potential coexistence and interaction of bromine and polyamide membranes during membrane-based water treatment prompts us to investigate the effect of bromine on membrane performance. For fully aromatic polyamide membrane NF90 exposed under a mild bromination condition (10 mg/L), bromine incorporation resulted in more negatively charged (-13 vs -25 mV) and hydrophobic (55.2 vs 58.9 degrees) surfaces and narrower pore channels (0.3 vs 0.29 nm). The permeabilities of water and neutral solutes were reduced by 64 and 69-87%, respectively, which was attributed to the decreased effective pore radius and hydrophilicity. NaCl permeability was reduced by 90% as a synergistic result of enhanced size exclusion and charge repulsion. The further exposure (100 and 500 mg/L bromine) resulted in a more hydrophobic surface (61.7 and 65.5 degrees) and the minor further reduction for water and solute permeabilities (1-9%). Compared with chlorine, the different incorporation efficiency and properties (e.g., atomic size, hydrophilicity) of bromine resulted in opposite trends and/or different degrees for the variation of physicochemical properties and filtration performance of membranes. The bromine incorporation, the shift and disappearance of three characteristic bands, and the increased O/N ratio and calcium content indicated the degradation pathways of N-bromination and bromination-promoted hydrolysis under mild bromination conditions (480 mg/L.h). The further ring-bromination occurred after severe bromine exposure (4800-24,000 mg/L.h). The semi-aromatic polyamide membrane NF270 underwent a similar but less significant deteriorated filtration performance compared with NF90, which requires a different explanation.
Reprint 's Address:
Email:
Version:
Source :
ENVIRONMENTAL SCIENCE & TECHNOLOGY
ISSN: 0013-936X
Year: 2021
Issue: 9
Volume: 55
Page: 6329-6339
1 1 . 3 5 7
JCR@2021
1 0 . 9 0 0
JCR@2023
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:114
JCR Journal Grade:1
CAS Journal Grade:2
Affiliated Colleges: