Indexed by:
Abstract:
Graphene-based membranes have been considered as promising separation membranes for water treatments due to their unique two-dimensional confined channels. However, subject to the preparation technology, the effective construction of graphene-based filtration membranes with suitable separation ability on heavy metal ions still face considerable challenges. Herein, we have successfully constructed a kind of graphene-based (reduced graphene oxide, rGO) nanofiltration membranes by adopting a plasma-assisted in-situ photocatalytic reduction method. Graphene oxide-Ag (GO-Ag) composite sheets are prepared firstly and then assembled into membranes by vacuum filtration. With the use of Ag nanoparticles as plasmonic photocatalyst, GO-Ag films can be in-situ reduced, leading to the formation of rGO-based composite membranes. Thanks to the mild in-situ reduction process, the filtration ability on heavy metal ions (Cr(VI), Cr3+, Cu2+ and Pb2+) caused by lamellar structure is well retained in the as-formed rGO-Ag membranes. Especially, when treating the typical toxic Cr(VI) solution, the retention capacity, water flux and stability of rGO-Ag membranes are all improved compared with that of the original GO-Ag ones. In addition, the effectively rejection of Cr(VI) from mixed solutions containing both Cr(VI) and Cr(III) also suggests the good applicability of such rGO-Ag membranes in a complex wastewater system.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF HAZARDOUS MATERIALS
ISSN: 0304-3894
Year: 2022
Volume: 423
1 3 . 6
JCR@2022
1 2 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 44
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: