Indexed by:
Abstract:
For laser-induced fluorescence (LIF), the SNR and related concentration detectability was severely limited by background signal (noise). Herein, an axial-excitation LIF based on pinhole metal-capillary (PMC) and direct laser-diode excitation was proposed. An overall similar to 480 fold improvement on SNR was realized, because the lasersidewall interaction (LSI) and related background signal (noise) can be effectively suppressed in PMC by avoidance of laser leakage and laser contact with capillary sidewall. For rhodamine B detection without sample enrichment, a detection limit of concentration (DLC) of 0.4 pM was obtained, which is 2.5 fold lower than the DLC (1 pM) of commercial LIFs equipped with bulky and expensive Ar+ laser. For selective detection of Cu2+, a DLC of 5 pM was realized, which is more than 40 fold lower than that of previous fluorimetry detection with similar quantum-dot probe. The PMC-LIF features compact (16 x 4 x 4 cm(3)), low-cost and high concentration detectability.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
OPTICS AND LASERS IN ENGINEERING
ISSN: 0143-8166
Year: 2021
Volume: 139
5 . 6 6 6
JCR@2021
3 . 5 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: