Indexed by:
Abstract:
准确对事件诱发电位(ERPs)进行分类,对于各种人类认知研究和临床医学评估非常有意义.由于ERPs信号是非常高维的数据,而且其中包含非常多的与分类无关的信息,从ERPs信号中提取特征尤显重要.分析了共空间模式(CSV)的原理和不足,引入自回归fAR)模型与白化变换相结合,提出了针对ERPs分类的时空特征提取方法,并设计了验证该方法的认知实验,在认知实验数据上分别用时空特征提取方法与CSP提取特征,用同样的分类器支持向量机(SVM)训练分类器,比较它们的分类效果.实验表明,在ERPs分类问题上,时空特征提取方法与CSP相比具有明显的优势,在参数确定合理的情况下,时空特征提取方法可使分类准确率达到90%以上.
Keyword:
Reprint 's Address:
Email:
Source :
生物化学与生物物理进展
ISSN: 1000-3282
Year: 2011
Issue: 9
Volume: 38
Page: 866-871
0 . 5 5 4
JCR@2011
0 . 2 0 0
JCR@2023
JCR Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 2
Affiliated Colleges: