Indexed by:
Abstract:
针对低压断路器的机械特性,采用小波分解法对其振动信号进行分析.根据电动操作机构及低压断路器合闸动作的时序关系,以驱动电机电流信号作为时间标识,有效地提取了合闸振动信号.提出小波包能量谱分析低压断路器合闸同期性研究,在小波包对振动合闸信号细节分解基础上,采用小波包重构提取合闸振动主频带信号特征,由此构造合闸同期性状态特征矢量,并应用BP神经网络建立三相合闸不同期故障的识别模型.在断路器基座横梁安装单个加速度传感器,实验模拟了DW15-1600低压断路器的四种同期性状态振动信号,仿真结果表明,本文提出的振动信号小波包能量谱与神经网络相结合的方法,可有效地分析低压断路器合闸同期性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电工技术学报
ISSN: 1000-6753
CN: 11-2188/TM
Year: 2013
Issue: 6
Volume: 28
Page: 81-85
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: