Indexed by:
Abstract:
利用振动信号辨识三相合闸不同期故障,应解决有效的振动信号消噪及其故障特征提取方法.提出一种希尔伯特-黄变换(HHT)的低压断路器振动信号分析方法,采用经验模态分解(EMD)有效地提取反映振动信号局部特性的本征模态函数(IMF)分量,以前5阶IMF分量表征振动信号特性且起到信号消噪作用.通过时域特征分析,得出振动信号的峭度和均方值可作为判别机械特性的辅助特征指标.提出前5阶IMF分量能量比及峭度、均方值为特征向量,建立粒子群优化径向基(PSO-RBF)神经网络的低压断路器合闸不同期故障识别模型.实验与仿真结果表明,基于单个传感器振动特性,综合采用时域分析、EMD分解、粒子群优化神经网络等人工智能的合闸同期性故障识别效果良好,为断路器故障尤其是三相合闸同期性振动分析提供了一种新的诊断方法.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电工技术学报
ISSN: 1000-6753
CN: 11-2188/TM
Year: 2014
Issue: 11
Volume: 29
Page: 154-161
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: