Abstract:
通过分析低压断路器振动信号的时域特征,得出其振动信号的峭度和均方值可作为判别机械特性的辅助特征指标,并采用希尔伯特-黄变换(HHT)提取反映断路器振动信号局部特性的本征模态函数(IMF)分量,提出以IMF分量能量比及峭度、均方值为特征向量,建立粒子群优化径向基神经网络的低压断路器合闸同期性故障识别模型.实验与仿真结果表明,基于振动特性综合采用时域分析、EMD分解、粒子群优化神经网络等人工智能技术,可有效地分析低压断路器合闸同期性.
Keyword:
Reprint 's Address:
Email:
Source :
Year: 2013
Page: 1-4
Language: Chinese
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: