Indexed by:
Abstract:
针对台标的视觉特征,提出一种基于递进卷积神经网络的台标识别算法.该网络不仅有对图像特征进行隐性提取的卷积层和采样层,还包括识别常规台标的泛化模块和识别偏差台标的特异模块.针对串行卷积神经网络训练耗时长的缺点,提出基于Spark的并行递进卷积神经网络算法,采用数据共享及批处理方式对算法模型进行并行化处理.实验证明,递进卷积神经网络算法对台标进行识别能达到98%的正确率,多节点并行化卷积神经网络相比于单节点模型能有效缩短80%以上训练所需的时间.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电视技术
ISSN: 1002-8692
CN: 11-2123/TN
Year: 2016
Issue: 5
Volume: 40
Page: 67-73
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: