Indexed by:
Abstract:
针对动态手语上下文联系强的特点,采用LSTM(Long Short-Term Memory)循环神经网络用于识别,同时,利用自编码实现动态手语的无监督学习.该方法将数据手套作为采集设备,在获取手语信息后,通过编码器、解码器生成手语的重构矢量.在实验过程中,将采集的数据集进行模型的训练,并与监督学习的结果进行比较.实验结果表明,该方法能够有效进行手语识别的无监督学习.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
微型机与应用
ISSN: 1674-7720
CN: 11-5881/TP
Year: 2017
Issue: 13
Volume: 36
Page: 59-61,65
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: