Indexed by:
Abstract:
本发明涉及一种基于双向长短期记忆神经网络的共享单车流量预测方法。考虑到共享单车流量是一种时间序列,当前流量与过去和将来的流量具有密切的联系,该方法建立了时间步长为12的双向长短期记忆网络模型,即以过去十二个小时的数据作为输入,预测未来一个小时的共享单车流量数据,以此类推,每次将时间向后平移一个小时,从而预测下一个共享单车流量数据。本发明利用平均绝对误差、平均绝对百分比误差、均方根误差、皮尔逊相关系数对预测结果进行评估。为了验证模型的性能,本发明选取人工神经网络,循环神经网络以及长短期记忆网络作为对比模型。实验结果显示,本发明方法在预测未来的共享单车流量的性能最佳。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202010563853.1
Filing Date: 2020/6/19
Publication Date: 2023-04-18 00:00:00
Pub. No.: CN111723990B
公开国别: 中国
Applicants: 福州大学
Legal Status: 授权
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: