Home>Results
Advanced Search
Indexed by:
Abstract:
In CH4−CO2 reforming, the activity and coke resistance of hydrotalcite-derived Ni-Cu/Mg(Al)O alloy catalysts show strong dependence on Ni-Cu composition. At reaction conditions of T = 873 K, CH4/CO2/N2 = 1/1/2, SV = 60 000 mL h–1 g–1, and TOS = 25 h, the alloy catalysts with bulk Cu/Ni ratio of 0.25–0.5 exhibit good activity, stability, and coke resistance, while those with lower and higher Cu/Ni ratios deactivate due to severe coking. The optimized Ni-Cu/Mg(Al)O catalysts show graphitic carbon which is only 1/85–1/136 that of Ni/Mg(Al)O, highlighting the efficacy of Ni-Cu alloying for coke suppression. Moreover, the Ni-Cu/Mg(Al)O catalyst of highest activity performs well at temperature as low as 723 K, appearing as an effective non-precious catalysts for low-temperature CH4−CO2 reforming. It is disclosed that a Cu composition of 25–45% is appropriate for the alloy catalyst to perform well. The results of activation energy measurement, CH4-TPSR/O2-TPO, and CO2-TPSR/H2-TPR indicate that alloying Ni with Cu inhibits CH4 decomposition, and Cu provides sites for CO2 dissociation to yield more active oxygen species suitable for carbon gasification, consequently lowering coke deposition and enhancing catalytic stability. © 2018 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Catalysis B: Environmental
ISSN: 0926-3373
Year: 2018
Volume: 239
Page: 324-333
1 4 . 2 2 9
JCR@2018
2 0 . 3 0 0
JCR@2023
ESI HC Threshold:209
JCR Journal Grade:1
CAS Journal Grade:1
Affiliated Colleges:
查看更多>>操作日志
管理员 2024-08-22 04:43:10 更新被引
管理员 2024-07-29 00:09:07 更新被引
管理员 2024-05-15 02:56:00 更新被引
管理员 2024-04-09 10:10:28 更新被引