Indexed by:
Abstract:
A sensitive and facile quartz crystal microbalance (QCM) biosensor for glucose detection in biological fluids was developed by means of a displacement-type assay mode between glucose and its analogy dextran for concanavalin A (ConA) binding sites on a graphene-based sensing platform. To construct such a displacement-based sensor, phenoxy-derived dextran (DexP) molecules were initially assembled onto the surface of graphene-coated QCM probe via pi-pi stacking interaction, and ConA molecules were then immobilized on the dextran through the dextran-ConA interaction. Upon addition of glucose. the analyte competed with the dextran for the ConA, and displaced it from the QCM probe, leading to a change in the frequency. Under optimal conditions, the frequency change relative to the basic resonant frequency was proportional to glucose concentration, and exhibited a dynamic range from 0.01 to 7.5 mM with a low detection limit (LOD) of 5.0 mu M glucose (at 3 sigma). The relative standard deviations (RSDs) were below 6.2% and 9.0% for the reproducibility and selectivity of the QCM glucose sensors, respectively. In addition, the assay system was evaluated with glucose spiking samples into the distilled water and blank cattle serum, receiving in excellent correlation with the referenced values. (C) 2010 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
ANALYTICA CHIMICA ACTA
ISSN: 0003-2670
Year: 2011
Issue: 1-2
Volume: 686
Page: 144-149
4 . 5 5 5
JCR@2011
5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count: 40
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: