• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lin Xing-Yi (Lin Xing-Yi.) [1] (Scholars:林性贻) | Ma Jun-Tao (Ma Jun-Tao.) [2] | Chen Chong-Qi (Chen Chong-Qi.) [3] (Scholars:陈崇启) | Zhan Ying-Ying (Zhan Ying-Ying.) [4] (Scholars:詹瑛瑛) | Zheng Qi (Zheng Qi.) [5] (Scholars:郑起)

Indexed by:

Scopus SCIE PKU CSCD

Abstract:

A series of Cu/Fe2O3 catalysts with different Cu loadings were prepared using a co-precipitation method, and the relationship between their structures and catalytic activities for the water gas shift (WGS) reaction was carefully examined. It was found that the as-prepared Cu/Fe2O3 catalysts exhibit excellent WGS performances, in particular, the one containing 20% (w) CuO (CF-20) shows the best catalytic activity, with CO conversion of 97.2% at 250 degrees C. Its catalytic stability is also outstanding during the temperature range of 250-400 degrees C. X-ray diffraction (XRD), N-2 physisorption, and H-2 temperature program reduction (H-2-TPR) techniques were used to characterize the crystal phases, textures, and reduction properties of the Cu/Fe2O3 catalysts. The results show that the generation of CuFe2O4, which has a spinel structure in stabilizing Cu microcrystals and is easier to be reduced at low temperature, resulting in enhancing their reduction properties and facilitating electrons transfer between Cu and Fe2O3, thus greatly improving the catalytic performance. Furthermore, (NH4)(2)CO3 solution treatment of the as-prepared catalysts was performed to study the effect of bulk CuO existed in the Cu/Fe2O3 catalysts. The result suggests that the bulk CuO is favor for H atom transfer between Cu and Fe2O3, thus promoting the reduction of CuFe2O4, finally improving the catalytic performance.

Keyword:

Copper loading Cu/Fe2O3 catalyst CuFe2O4 Water gas shift

Community:

  • [ 1 ] [Lin Xing-Yi]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China
  • [ 2 ] [Ma Jun-Tao]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China
  • [ 3 ] [Chen Chong-Qi]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China
  • [ 4 ] [Zhan Ying-Ying]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China
  • [ 5 ] [Zheng Qi]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China

Reprint 's Address:

  • 林性贻

    [Lin Xing-Yi]Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China

Show more details

Related Keywords:

Source :

ACTA PHYSICO-CHIMICA SINICA

ISSN: 1000-6818

CN: 11-1892/O6

Year: 2014

Issue: 1

Volume: 30

Page: 157-163

0 . 8 5 2

JCR@2014

1 0 . 8 0 0

JCR@2023

ESI Discipline: CHEMISTRY;

ESI HC Threshold:268

JCR Journal Grade:4

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:48/10042623
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1