Indexed by:
Abstract:
In this paper, CaSiO3 was prepared using a thermal decomposition approach and added to Vulcan XC-72 carbon black as support material. The X-ray diffraction and Transmission electron microscopy results show that the addition of CaSiO3 does not significantly change the particle size and distribution of Pd nanoparticles. The X-ray photoelectron spectroscopy reveals the interaction between Pd and CaSiO3. In addition, the electrochemical CO-striping measurement reveals that the Pd/50CaSiO(3)/C catalyst exhibits the largest electrochemical active surface and best CO tolerance. Moreover, cyclic voltammetry and chronoamperometry tests demonstrate that the Pd supported by CaSiO3 and C (50:50 in wt.%) possesses a much higher current density (1408 mA mg(-1)) than that of the Pd/C catalyst (743 mA mg(-1)) towards ethanol oxidation in alkaline media, and better stability as well. These results support the suitability of Pd/50CaSiO(3)/C catalyst developed in this work as a promising candidate for direct ethanol fuel cells application (C) 2015 Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ELECTROCHIMICA ACTA
ISSN: 0013-4686
Year: 2015
Volume: 158
Page: 18-23
4 . 8 0 3
JCR@2015
5 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:265
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: