Indexed by:
Abstract:
CdS has been regarded as a promising photocatalytic water-splitting visible-light photocatalyst, but low catalytic activity and photocorrosion seriously limited its practical application. Here, inspired by core-shell principles, we try to fabricate CdS@MoS2 core-shell structures by utilizing unstable CdS nanowires as core and multilayered MoS2 as shell. Multilayered MoS2 not only serves as a protective shell to preserve CdS but also provides abundant reactive sites and forms a type I junction, giving rise to remarkable hydrogen production activities. The optimum hydrogen production rate based on CdS@MoS2 core-shell composite reaches 26.14 mmol center dot h(-1)center dot g(-1), which is about 54 times greater than that of pure CdS and about twice that of CdS nanowires with 1% Pt. Impressively, the presentation of MoS2 nanosheets can effectively avoid photocorrosion, which resulted in 12 h stable hydrogen production.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2017
Issue: 8
Volume: 9
Page: 6950-6958
8 . 0 9 7
JCR@2017
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:306
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 111
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: