Indexed by:
Abstract:
Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF POWER SOURCES
ISSN: 0378-7753
Year: 2018
Volume: 383
Page: 34-41
7 . 4 6 7
JCR@2018
8 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:284
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: