Indexed by:
Abstract:
The chemical reactions taking place in lithium-ion batteries can trap lithium and alter the distribution of lithium and the deformation of the electrode during electrochemical charging and discharging. In this work, we incorporate the strain generated by chemical reactions in the transient analysis of diffusion-induced stress and numerically solve the one-dimensional problem under galvanostatic and potentiostatic operations, respectively. The numerical results show that both the diffusion and local chemical reaction contribute to the expansion of the electrode. Under the potentiostatic operation, lithiation introduces a stress spike at the fixed end at the onset of the lithiation. The chemical reactions play a significant role in controlling the temporal evolution of lithium and the deformation of electrode, which needs to be taken into account in the analysis of structural durability of lithium-ion batteries.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACTA MECHANICA
ISSN: 0001-5970
Year: 2019
Issue: 3
Volume: 230
Page: 993-1002
2 . 1 0 2
JCR@2019
2 . 3 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:150
JCR Journal Grade:3
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: