Indexed by:
Abstract:
Fluorescent nanoparticles were prepared by encapsulating carbon dots (CDs) within silica spheres and then modifying these spheres with amino groups (CD@SiO2-NH2). On the basis of the silver mirror reaction, Ag+ assembled on the surface of CD@SiO2-NH2 is reduced to silver nanoparticles (AgNPs) by formaldehyde. The in-situ grown AgNPs cause a visually distinguishable fluorescence enhancement. This metal-enhanced effect was investigated by transmission electron microscopy and spectroscopic characterization, and the relevant conditions were optimized. CD@SiO2-NH2-Ag+ fluorescent probes were loaded onto nano-sponge pieces for the analysis of formaldehyde gas. The blue fluorescence emission (peaking at 466 nm) in response to formaldehyde is greatly enhanced (up to 5.2 times) over other species. There is a linear relationship between the fluorescence enhancement and formaldehyde gas concentration in the range of 10 ppb to 1 ppm, and the detection limit is 3 ppb. The fluorimetric assay needs 30 min for the reaction, and the fluorescent nano-sponge pieces are disposable.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MICROCHIMICA ACTA
ISSN: 0026-3672
Year: 2020
Issue: 2
Volume: 187
5 . 8 3 3
JCR@2020
5 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: