Indexed by:
Abstract:
The local stability of a weakly dissipative heat engine is analyzed and linked to an energetic multiobjective optimization perspective. This constitutes a novel issue in the unified study of cyclic energy converters, opening the perspective to the possibility that stability favors self-optimization of thermodynamic quantities including efficiency, power and entropy generation. To this end, a dynamics simulating the restitution forces, which mimics a harmonic potential, bringing the system back to the steady state is analyzed. It is shown that relaxation trajectories are not arbitrary but driven by the improvement of several energetic functions. Insights provided by the statistical behavior of consecutive random perturbations show that the irreversible behavior works as an attractor for the energetics of the system, while the endoreversible limit acts as an upper bound and the Pareto front as a global attractor. Fluctuations around the operation regime reveal a difference between the behavior coming from fast and slow relaxation trajectories: while the former are associated to an energetic self-optimization evolution, the latter are ascribed to better performances. The self-optimization induced by stability and the possible use of instabilities in the operation regime to improve the energetic performance might usher into new useful perspectives in the control of variables for real engines.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
PHYSICAL REVIEW LETTERS
ISSN: 0031-9007
Year: 2020
Issue: 5
Volume: 124
9 . 1 6 1
JCR@2020
8 . 1 0 0
JCR@2023
ESI Discipline: PHYSICS;
ESI HC Threshold:115
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: