Indexed by:
Abstract:
Artificial intelligence devices that can mimic human brains are the foundation for building future artificial neural networks. A key step in mimicking biological neural systems is the modulation of synaptic weight, which is mainly achieved by various engineering approaches using material design, or modification of the device structure. Here, we realize the modulation of the synaptic weight of a Ta2O5/ITO-based all-metal oxide synaptic transistor via laser irradiation. Prior to the deposition of the active layer and electrodes, a femtosecond laser was used to irradiate the surface of the insulator layer. Typical synaptic characteristics such as excitatory postsynaptic current, paired pulse facilitation and long-term potentiation were successfully simulated under different laser intensities and scanning rates. In particular, we demonstrate for the first time that laser irradiation could control the quantity of oxygen vacancies in the Ta2O5 thin film, leading to precise modulation of the synaptic weight. Our research provides an instantaneous (<1 s), convenient and low-temperature approach to improving synaptic behaviors, which could be promising for neuromorphic computing hardware design.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NANOTECHNOLOGY
ISSN: 0957-4484
Year: 2020
Issue: 21
Volume: 31
3 . 8 7 4
JCR@2020
2 . 9 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3