Indexed by:
Abstract:
It is a challenge to explore photocatalytic materials for sunlight-driven water splitting owing to the limited choice of a single semiconductor with suitable band energy levels but with a minimized band gap for light harvesting. Here, we report a one-photon excitation pathway by coupling polymeric carbon nitride (PCN) semiconductor with LaOCl to achieve overall water splitting. This artificial photosynthesis composite catalyzes the decomposition of H2O into H(2)and O-2, with evolution rates of 22.3 and 10.7 mu mol h(-1), respectively. The high photocatalytic performance of PCN/LaOCl can be ascribed to the simultaneously accomplished reduction and oxidation of water on LaOCl and PCN domains, respectively, as well as the fast charge separation and migration induced by the interfacial electric field related to LaOCl modification. This study provides new insights on the development of composite photocatalysts for pure water splitting based on polymer-based materials via charge modulation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2020
1 5 . 3 3 6
JCR@2020
1 6 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 84
SCOPUS Cited Count: 90
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: